КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени А. Н. Туполева - КАИ

На правах рукописи

РОМАНОВ АНАТОЛИЙ ГЕННАДЬЕВИЧ

УДК 621.396.67

МЕТОДЫ И СРЕДСТВА КОНТРОЛЯ ОТРАЖАЮЩИХ СВОЙСТВ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ В КОНСТРУКЦИЯХ РЕФЛЕКТОРОВ АНТЕНН КОСМИЧЕСКИХ АППАРАТОВ

Специальность 05.11.13 – «Приборы и методы контроля природной среды, веществ, материалов и изделий»

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата технических наук

Научный руководитель:

Чони Ю.И. к.т.н., профессор

ОГЛАВЛЕНИЕ

Введени	ae	5				
Глава 1	Проблемы измерения электродинамических характеристик материалов					
	рефлекторов зеркальных антенн космических аппаратов 11					
1.1	Технологические особенности изготовления рефлекторов					
	зеркальных антенн КА 1	.1				
1.2	Обзор публикаций и патентной информации по вопросам измерения коэффициента отражения 1	.7				
1.3	Существующие способы измерения коэффициента отражения 2	27				
1.4	Требования к процедуре измерения коэффициента отражения					
	материалов рефлекторов антенн космических аппаратов 2	28				
1.5	Приборы, используемые при измерении коэффициентов отражения 2	29				
1.6	Амплитудно-фазо-частотные характеристики коэффициента					
	отражения для хорошо отражающих материалов 3	2				
	1.6.1 Коэффициент отражения от границы раздела сред 3	\$2				
	1.6.2 Коэффициент отражения от слоя 3	5				
1.7	Классификация способов измерения и алгоритмов обработки данных 4	1				
1.8	Выводы по Главе 1 4	6				
Глава 2	Измерение коэффициента отражения в волноводном тракте 4	-8				
2.1	Существо и основные особенности трактовых способов 4	-8				
2.2	Восстановление значения коэффициента отражения при измерениях					
	в волноводе					
2.3	Восстановление значения коэффициента отражения при измерениях					
	в рупоре	5				
2.4	Дифференциальные способы измерения коэффициента отражения 5	8				
2.5	Выводы по главе 2					
Глава 3	Измерение коэффициента отражения сетеполотна в поле					
	прошедшей волны	6				
3.1	Физические основы					
3.2	Реализация способа измерения 6	57				
	3.2.1 Способ измерения	57				
	3.2.2 Оценка погрешности измерения 6	68				
	3.2.3 Требования к составным частям установки	0'				
3.3	Выводы по главе 37	'4				

Глава 4	Измерение коэффициента отражения с использованием					
	многократных отражений в полуоткрытом резонаторе	75				
4.1	Электродинамика полуоткрытого резонатора					
4.2	Частотная характеристика отражений на входе облучателя 77					
4.3	Предварительная оценка точности измерения КО	80				
4.4	Методика вычисления КО по результатам измерений	84				
4.5	Имитационное моделирование измерительного стенда	89				
4.6	Устойчивость задачи восстановления КО образца по частотной					
	характеристике <i>S</i> ₁₁ (<i>f</i>)	94				
	4.6.1 Постановка задачи	94				
	4.6.2 Критерии устойчивости решения	96				
	4.6.3 Диапазон частот Δf , фокусное расстояние $L_{\phi o \kappa}$ и точность					
	восстановления КО	99				
4.7	Оценка методической погрешности, связанной с аппроксимацией	100				
	зависимости $\alpha_3(I)$	102				
4.8	Выводы к главе 4	108				
Глава 5	Реализация предложенных способов измерений. Практические					
	рекомендации	110				
5.1	Особенности организации и осуществления трактовых измерений	. 110				
5.2	Установка изменения КО мостовым способом11					
	5.2.1 Конструкция установки	. 113				
	5.2.2 Принцип действия установки	114				
	5.2.3 Алгоритм обработки результатов измерений	117				
	5.2.4 Измерение КО образца	118				
	5.2.5 Обработка и протоколирование результатов измерения	120				
5.3	Установка измерения КО в поле прошедшей волны	121				
	5.3.1 Конструкция установки	121				
	5.3.2 Порядок измерения КО образца	122				
	5.5.5 Результаты тестовых измерении	123				
5 1	5.5.4 Программно-методическое обеспечение	123				
3.4	установка с полуоткрытым резонатором	124				
	5.4.1 Состав оборудования. Требования к точности изготовления	124				
	резонатора 5.4.2. Проблема калибровочных образцов	124				
5 5	Вироли по Гларе 5	120				
5.5	иводы по т лаво <i>Э</i>	. 150				

ЗАКЛЮЧЕНИЕ	. 131
Список сокращений и условных обозначений	. 132
Список литературы	. 134
Список иллюстративного материала	. 141
ПРИЛОЖЕНИЕ А. Программное обеспечение к установке изменения КО мостовым способом	. 146
ПРИЛОЖЕНИЕ Б. Программное обеспечение к установке измерения КО в поле прошедшей волны	. 152
ПРИЛОЖЕНИЕ В. Программное обеспечение к установке с полуоткрытым	1
резонатором	. 155

Введение

Сегодня перед отечественной отраслью спутниковой связи стоит задача определить облик новых российских спутников различного назначения с перспективой на 15-20 лет вперед. Для этого необходимо объективно осмыслить технические решения, которые в настоящее время уже проверены на практике или находятся на стадии отработки, и выбрать среди них наиболее приемлемые с точки зрения не только техники и технологии, но и экономических и даже геополитических факторов.

Облик спутников во многом определяется уровнем развития бортовой антенной техники. Анализ современных и перспективных бортовых антенных систем показывает, что и в зарубежных, и в отечественных разработках имеется стремление получить лучшее качество сигнала за счет достижения предельных, практически соответствующих теоретически возможным, характеристик антенн для заданных зон обслуживания, сохраняя и улучшая традиционные для космической техники высокие удельные характеристики по массе конструкции.

Это, в частности, достигается высокой, прецизионной геометрической точностью конструкции антенны. Одной из наиболее технически сложных проблем является при этом обеспечение прецизионной точности отражающей поверхности рефлекторов зеркальных антенн, как на этапе изготовления, так и в условиях эксплуатации.

Кроме геометрической точности, при проектировании и изготовлении зеркальных антенн большое значение уделяется способности минимизировать потери энергии излучения, что достигается обеспечением отражения не менее 98÷99% электромагнитной энергии излучения рабочей поверхностью рефлектора в заданном частотном диапазоне.

Технические характеристики современных зарубежных высокоточных рефлекторов лежат в следующих диапазонах:

- Погрешность изготовления: СКО ≤ 0,01 ÷ 0,03 мм;
- Температурные деформации: СКО ≤ (0,005÷0,100) мм;
- Коэффициент отражения: ≥0,98÷0,99;
- Удельная масса рефлектора: ≤(1 ÷ 3) кг/м²;
- Жесткость: ≥ (40 ÷80) Гц.

Из анализа вышеперечисленных характеристик следует, что подобные антенны относятся к классу сверхточных (прецизионных) конструкций, требующих применения новых материалов и специальных мер при проектировании, технологической подготовке производства и изготовлении.

Цель работы является усовершенствование существующих и создание новых методов и средств контроля отражающих свойств материалов, используемых при изготовлении рефлекторов зеркальных антенн космических аппаратов.

Задача исследования: разработка способов и автоматизированных стендов измерения коэффициента отражения (КО) материалов, используемых при изготовлении рефлекторов зеркальных антенн космических аппаратов.

Для достижения поставленной цели необходимо:

1. Усовершенствовать существующие волноводные способы измерения для хорошо отражающих образцов значительных волновых размеров.

2. Разработать способ измерения коэффициента отражения образцов из металлического сетеполотна.

3. Разработать способ бесконтактных измерений коэффициента отражения образцов из углепластика.

4. Создать алгоритмические и программно-технические средства (стенды) для реализации разработанных способов контроля отражающих свойств материалов рефлекторов антенн космических аппаратов.

Объект исследования: материалы рефлекторов зеркальных антенн космических аппаратов.

Предмет исследования: методы и средства автоматизированного контроля КО материалов рефлекторов зеркальных антенн космических аппаратов.

Методы исследования. Для решения поставленных задач использован математический аппарат прикладной электродинамики и теории вероятностей, объектно-ориентированный язык программирования Delphi 7.0, пакет CST Microwave Studio моделирования трехмерных CBЧ структур, статистические методы обработки данных.

Научная новизна результатов работы состоит в следующем:

1. Предложены усовершенствованные способы измерения КО материалов с электропроводящей поверхностью, осуществляемые в волноводных трактах: реконструктивный способ, позволяющий повысить точность измерения КО испытуемых образцов за счет использования данных о результатах измерения эталонных нагрузок, и дифференциальный способ, позволяющий повысить точность измерения КО, за счет уменьшения инструментальной погрешности, вносимой асимметрией плеч двойного Т-моста.

2. Предложен способ определения КО металлического сетеполотна на основе измерения коэффициента прохождения. Исследованы зависимости погрешностей измерения от конструктивных параметров стендов. Разработаны рекомендации по обеспечению точности измерения КО.

3. Предложен бесконтактный способ определения КО углепластика или сетеполотна по результатам измерения частотной характеристики полуоткрытого резонатора с испытуемым образцом. Разработан алгоритм обработки результатов измерений, основанный на описании процесса интерференции волн в рамках геометрической оптики. Задача расчета КО исследована на устойчивость, выявлен пороговый эффект, получена оценка методической погрешности измерений.

4. Разработаны алгоритмические и программно-технические средства, реализующие предложенные способы. Созданы автоматизированные стенды для измерения КО образцов в диапазоне от 18 ГГц до 36 ГГц на базе современных векторных анализаторов цепей фирмы Rohde&Schwarz. Разработанное программное обеспечение позволяет проводить измерения и отображать результаты в реальном масштабе времени с автоматическим формированием протоколов испытаний.

Научная новизна результатов подтверждается получением двух патентов РФ на изобретения (на способы и устройства измерения коэффициентов отражения) [80, 81].

Практическая ценность результатов работы. Полученные результаты позволяют повысить достоверность проектных оценок радиотехнических характеристик зеркальных антенн, а так же качество и оперативность контроля отражающих свойств материалов рефлекторов в процессе отработки технологических процессов и изготовления летного оборудования.

Реализация результатов работы. Результаты диссертационной работы внедрены на предприятии ОАО «Информационные спутниковые системы» имени академика М.Ф. Решетнева» при выполнении работ по ОКР «Экспресс 4000», ОКР «Олимп», а также в учебном процессе в Казанском национальном исследовательском техническом университете (КНИТУ-КАИ), о чем имеются соответствующие акты.

Основные положения, выносимые на защиту:

1. Усовершенствованные способы трактовых измерений КО материалов с электропроводящей поверхностью, отличающиеся от известных способов устранением методической погрешности, возникающей из-за отличия характеристического сопротивления волновода от волнового сопротивления свободного пространства, и компенсацией инструментальной погрешности, вызванной асимметрией плеч двойного Т-моста.

2. Способ определения коэффициента отражения металлического сетеполотна на основе измерений коэффициента прохождения.

3. Способ бесконтактного определения КО углепластика или сетеполотна по результатам измерения частотной характеристики полуоткрытого резонатора с испытуемым образцом.

4. Алгоритмические и программно-технические средства измерения КО образцов, реализующие предложенные способы.

8

Достоверность обоснованность U полученных результатов обеспечивается корректным применением методов анализа антенн и СВЧ обоснованностью устройств, упрощающих допущений, результатами моделирования, имитационного a так же соответствием расчетных И экспериментальных данных

Апробация работы. Основные результаты работы обсуждались на Международных научно-технических конференциях по теории и технике антенн, в том числе: «III Всероссийский конкурс молодых ученых» (Москва, 2011), «Проблемы техники и технологий телекоммуникаций, ПТиТТ-ХІІ» (Казань, 2011). «Современные проблемы радиоэлектроники» (Красноярск, 2012). «Information Science and Control Engineering - ICISCE 2012» (Шэньчжэнь, Китай, 2012), «Радиолокация, навигация, связь **RLNC-2013**» (Воронеж, 2013), «IX International Conference on Antenna Theory and Techniques (ICATT-2013)» (Одесса, Украина, 2013), а также на научно-технических семинарах и совещаниях в КНИТУ-КАИ и ОАО «ИСС» имени академика М.Ф. Решетнева».

Публикации. Основное содержание диссертации изложено в 11 научных публикациях, включая 2 статьи в ведущих научных изданиях, входящих в перечень ВАК (Радиотехника, Вестник КГТУ), 2 патента РФ на изобретение, 2 работы в рецензируемых зарубежных изданиях трудов международных НТК (Китай, Украина), 7 докладов на международных научно-технических конференциях.

Соответствие диссертации научной специальности.

Диссертация соответствует специальности 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий. Представленные в ней результаты соответствуют следующим пунктам паспорта специальности:

Усовершенствование трактовых способов измерения КО, разработка способа определения КО по результатам измерения коэффициента прохождения и способа определения КО по результатам измерения характеристик полуоткрытого резонатора с испытуемым образцом соответствует п. 1 «Научное обоснование

новых и усовершенствование существующих методов аналитического и неразрушающего контроля природной среды, веществ, материалов и изделий».

Изготовление и внедрение на предприятии ОАО «Информационные спутниковые системы» имени академика М.Ф. Решетнева» измерительных стендов соответствует п. 3 «Разработка, внедрение и испытание приборов, средств и систем контроля природной среды, веществ, материалов и изделий, имеющих лучшие характеристики по сравнению с прототипами».

Разработка алгоритмических и программно-технических средств измерения КО на основе предложенных способов, обработки данных и визуализации результатов измерений соответствует п. 6. «Разработка алгоритмического и программно-технического обеспечения процессов обработки информативных сигналов и представление результатов в приборах и средствах контроля, автоматизация приборов контроля».

Структура и объем работы. Диссертация состоит из введения, пяти глав и заключения, содержит 160 страниц машинописного текста, 93 рисунка, 8 таблиц, 77 наименований использованной литературы и 11 наименований работ автора, опубликованных по теме диссертации.

Благодарности. Автор искренне признателен В. Н. Лаврушеву за помощь в организации и проведении проверочного эксперимента и всему коллективу кафедры РТС за проявленный интерес и поддержку работы.

Особую благодарность выражаю профессору Ю.Е. Седельникову за ценные идеи и полезные советы, а также научному руководителю Ю.И. Чони за вклад в работу и мою подготовку.

Глава 1 Проблемы измерения электродинамических характеристик материалов рефлекторов зеркальных антенн космических аппаратов

1.1 Технологические особенности изготовления рефлекторов зеркальных антенн КА

К материалам рефлекторов антенных систем космических аппаратов предъявляются специфические требования. Рефлекторы таких антенн должны иметь достаточный запас механической прочности, чтобы выдержать перегрузки, характерные для участка выведения КА, должны обладать температурной стабильностью при воздействии перепадов температур связанных с воздействием солнечного излучения И при затенении части рефлектора элементами конструкции КА, должны иметь минимальную массу и максимальный коэффициент отражения (КО) ВЧ сигнала, чтобы обеспечить антенне высокий коэффициент усиления и снизить разогрев рефлектора из-за тепловых потерь в материале. В связи с этим в конструкции антенн КА широко применяются различные марки углепластика и металлическое трикотажное сетеполотно.

Углепластиковые рефлекторы

Изготовление обшивок размеростабильных рефлекторов из углепластика производят с использованием специализированной оснастки методом вакуумного формования за один технологический цикл – выкладка всех материалов в сыром виде и отверждение (полимеризация) при высокой температуре в вакууме. При этом отражающий слой рефлектора формируется из препрега M55J/EX1515 с использованием смолы на основе цианат-эфирного связующего. Применение данных материалов позволяет снизить температуру формования сотового рефлектора, уменьшить удельную массу рефлектора с сохранением прочностных характеристик, а также свести к минимуму термо- и гидроупругие деформации. Материалы обеспечивают высокую размеростабильность при воздействии факторов хранения и космического пространства. Между отражающей и тыльной обшивками рефлектора укладывают слой сотового заполнителя на основе арамидного волокна типа HRH-10/F35. Для склеивания составных частей используют клеевую пленку типа FM 300-2U. Основные технологические операции изготовления углепластикового рефлектора показаны на рисунке 1.1. На рисунках 1.2 и 1.3 приведены образцы антенн с углепластиковыми рефлекторами.

В связи с тем, что в составе отражающей обшивки рефлектора присутствует и материал с высоким коэффициентом отражения (препрег) и материал с низким коэффициентом отражения (смола), от качества сжатия слоев обшивки при полимеризации зависит ее коэффициент отражения. Как показывает опыт, для рефлекторов, работающих в С-диапазоне частот и ниже, можно не предпринимать никаких дополнительных мер для обеспечения требуемого коэффициента отражения при отработанной технологии изготовления. Для рефлекторов, работающих в Ки-диапазоне частот и выше, приемлемый коэффициент отражения может быть получен только при нанесении на рефлектор дополнительного отражающего покрытия или использовании перспективных материалов с высоким содержанием угольных волокон. Для отлаженного производства изготовления обшивок углепластиковых рефлекторов контроль коэффициента отражения может проводиться периодически для подтверждения стабильности технологического процесса. При разработке новых технологических процессов и внедрении новых материалов для изготовления обшивок углепластиковых рефлекторов коэффициент отражения является одним из основных контрольных показателей для принятия решения о внедрении.

б) выкладка препрега

в) выкладка сотозаполнителя

г) выкладка пленочного клея

д) выкладка тыльной оболочки

е) выкладка препрега завершена

ж) установка вакуумного мешка

з) транспортировка в термокамеру

Рисунок 1.1 — Основные технологические операции изготовления углепластикового рефлектора

Рисунок 1.2 — Двухдиапазонная антенна геодезического КА

Рисунок 1.3 — Контурные антенны КА связи

Рефлекторы из металлического сетеполотна

В качестве исходного материала при выработке металлических сетеполотен применяются стальные, вольфрамовые, молибденовые, медные и другие нити диаметром 30...90 мкм. Металлические нити предварительно обкручивают текстильными нитями толщиной 5-16,7 текс. И на ткацком оборудовании происходит изготовление ткани из указанного материала. Сетчатую поверхность вяжут основовязаным двухгребеночным платированным или филейным переплетением как при полной, так и при неполной проборках гребенок из металлических нитей. Различные виды плетения обеспечивают разную плотность вязки, а следовательно определяют необходимое растягивающее усилие для сетеполотна и коэффициент прохождения сигнала через сетеполотно. После вязания текстильные нити удаляются испарением, растворением или выжиганием, а на оставшийся металлический каркас наносят высокотокопроводящее покрытие, обеспечивающее снижение электрического сопротивления сетчатой поверхности, используют золочение или никелирование. Радиоотражающую для чего поверхность таких рефлекторов изготавливают путем сшивания отдельных деталей эластичным машинным швом. В дальнейшем для обеспечения характеристик рефлектора сетеполотно быть радиоотражающих должно смонтировано в состав рефлектора с заданным поверхностным натяжением. Основные технологические операции изготовления рефлектора с отражающей поверхностью из сетеполотна показаны на рисунке 1.4. На рисунке 1.5 приведен образец антенны с отражающей поверхностью из сетеполотна.

Если натяжение радиоотражающего сетеполотна слабое, то ухудшается контакт между микропроволоками и падают радиоотражающие свойства сетеполотна. Кроме того, не до конца растягиваются складки материала, что снижает точность радиоотражающей поверхности. При сильном натяжении радиоотражающая поверхность оказывает сильное демпфирующее действие на раскрывающийся рефлектор, что снижает надёжность раскрытия.

а) изготовление элементов силового каркаса

в) сборка формообразующей структуры

б) сборка силового каркаса рефлектора

г) монтаж отражающей поверхности из сетеполотна

Рисунок 1.4 — Основные технологические операции изготовления рефлектора с отражающей поверхностью из сетеполотна

Рисунок 1.5 — Антенна Ки-диапазона связного КА

Таким образом, перед разработчиком сетчатого рефлектора стоит противоречивая задача. С одной стороны сетеполотно должно быть натянуто для обеспечения требуемого коэффициента отражения. А с другой стороны степень натяжения должна быть по возможности минимальной. Только проведение экспериментов по определению зависимости КО от растягивающего усилия позволяет принять правильное решение.

Обзор публикаций и патентной информации по вопросам измерения коэффициента отражения

Проблемы измерений в технике СВЧ в интересах определения как электромагнитных характеристик материалов, так и КО образцов или тел

отражены в достаточно большом числе монографий, учебников, научнотехнических публикаций и нормативных документов [1 - 24].

Очевидно, что определение коэффициента отражения испытуемого образца может осуществляться тремя путями.

Непосредственное измерение отраженного поля при облучении образца, например, рупорным излучателем (прямые методы измерений: в дальней зоне, с применением коллиматора, с использованием интерференции облучающей и отраженных волн).

Образец может быть помещен в фидерный тракт установки и по результатам измерения коэффициента отражения в тракте может быть рассчитан коэффициент отражения для плоской волны (трактовые способы измерений: по КСВН или коэффициенту S₁₁, дифференциальные способы, компенсационные способы).

Если достаточно точно известны (или измерены) параметры материалов и размеры слоев испытуемого образца, то КО может быть рассчитан/оценен в результате решения соответствующей электродинамической задачи (косвенные способы измерений: резонаторный способ, по матрице рассеяния образца материала в тракте или свободном пространстве).

В принципе подобные измерения осуществимы при любых значениях КО или электродинамических характеристик материала. Однако, взаимодействие физического тела с электромагнитным полем приводят к существенно отличающимся проявлениям в ситуациях малого коэффициента отражения и КО, значение которого близко к единице. Поэтому конкретные способы измерений и структуры соответствующих измерительных установок для указанных ситуаций, как правило, различны.

Широко применяемым и наиболее точным способом измерения параметров магнитодиэлектриков является резонаторный способ [17]. Испытуемый образец материала помещают в резонатор, у которого при этом изменяется резонансная частота и добротность. Резонансная частота связана с диэлектрической и магнитной проницаемостью образца, а добротность – с потерями в нем. Решая

соответствующую электродинамическую задачу, получают расчетные формулы, связывающие электромагнитные параметры испытуемого материала с резонансной частотой и добротностью резонатора. В [17] приведено решение задачи о резонаторе, образованном цилиндрическим волноводом с волной типа H₀₁, в который введен слой магнитодиэлектрика (без металлического покрытия). Приведена схема установки для измерения параметров материала, обсуждаются источники погрешностей измерения и результаты измерения диэлектрической проницаемости тонколистовых диэлектриков на частотах 9 – 10 ГГц.

Обзор публикаций и патентные исследования [25 - 45] свидетельствуют о том, что измерению малых КО уделяется большее внимание. Во-первых, широк измерениями. круг задач, связанных с такими Это И производство радиопоглощающих покрытий для безэховых камер, и разработка средств снижения радиолокационной заметности (эффективной поверхности рассеяния) объектов, и контроль радиопрозрачных обтекателей. Во-вторых, быть может, это более интересная в техническом отношении задача: измерение КО на уровне ниже -30 дБ требует непростых приемов компенсации (или учета) собственных отражений И высокой чувствительности соответствующих приборов. B таблице 1.1, представлены результаты патентного поиска. В последней колонке выражено субъективное мнение автора о достоинствах соответствующих технических решений, a В качестве недостатков указываются факторы, КО близкого 1,0. затрудняющие применение измерений К ИХ для

Таблица 1.1 – Способы и устройства измерения коэффициента отражения

21

№ патента/Название/	Суть технического решения	Примечания
Дата опубликования RU 2326368 Способ измерения параметров структуры "металлическая пленка - полупроводниковая или диэлектрическая подложка" 10.06.2008	$P_{apout} = T ^2 P_{max}$ $P_{apout} = T ^2 P_{apout} = T$	Достоинства Увеличение диапазона измерения коэффициентов отражения и прохождения, а также увеличение чувствительности Недостатки Измерение в тракте Необходимость гальванического контакта
RU 2321007 Способ измерения локальных энергетических частотных спектров и коэффициента отражения радиопоглощающего материала 27.03.2008	Излучатель 6 облучает испытуемый образец 8 пикосекундным импульсом, отраженный сигнал принимается зондом 5, ПЭВМ 3 вычисляет энергетические вейвлет-спектрограммы и по ним размеры и характер отражающего объекта.	Достоинства Измерение КО в очень широкой полосе частот и восстановление параметров отражателя. Недостатки Измерение только малых значений КО Относительно большие размеры полигона
RU 2281476 Рефлектометр на основе многоходовой оптической схемы 10.08.2006	Многоходовая оптическая схема образована объективами 8, 11 и плоскими зеркалами 9, 12. Испытуемый образец 13 размещается между линзой 11 и зеркалом 12.	Достоинства Повышают точность измерений за счет многократных отражений. Недостатки Оптический диапазон.

22

№ патента/Название/ Дата опубликования	Суть технического решения	Примечания
RU 2281471 Рефлектометр многократного отражения на основе плоских зеркал 10.08.2006	Оптический луч вводится под малым углом в область между испытуемыми плоскими параллельными зеркалами. После многократных отражений луч поступает в оптический приемник.	Достоинства Повышают точность измерений за счет многократных отражений. Недостатки Оптический диапазон.
RU 2253874 Способ панорамного измерения модуля коэффициента отражения СВЧ двухполюсника 10.06.2005	Простейший способ измерения КО испытуемого двухполюсника 4 дополнен калибровочными измерениями КЗ, ХХ и согласованной нагрузки	Достоинства Простота трактового метода Недостатки Ограниченная точность прямого метода измерения Не оригинальное решение
SU 511552 Устройство для измерения малых коэффициентов отражения 25.04.1976	Устройство обеспечивает измерения коэффициента отражения при различных углах падения электромагнитной волны на исследуемый элемент за счет того, что в устройство дополнительно введена металлическая пластина, закрепленная на исследуемом элементе под углом 90° к нему, вращающаяся вместе с образцом.	Достоинства Оригинальное использование принципа уголкового отражателя Недостатки Ограниченная точность прямого метода измерения

№ патента/Название/ Дата опубликования	Суть технического решения	Примечания
SU 420956 Устройство для измерения малых коэффициентов отражения 25.03.1974	. Данное изобретение призвано устранить влияние паразитных отражений от посторонних предметов, устранить трудности, связанные с увеличением размеров антенны и образца на низких частотах и обеспечить условия измерений, адекватные условиям измерения в свободном пространстве.	Достоинства Используется принцип выделения полезного сигнала за счет фазовой модуляции Недостатки Измерение только малых значений КО Необходимость механических перемещений Сложная механика
RU 2234101 Способ измерения коэффициента отражения радиоволн от радиопоглощающих покрытий 05.08.2002	В 1 2 3 Задачей настоящего изобретения является повышение точности измерений КО РПП в сверхширокой полосе частот при одновременном снижении временных затрат на их проведение.	Достоинства Используется широкополосное оборудование и вычислительные методы определения КО Недостатки Измерение только малых значений КО
RU 2436107 Рефлектометр 10.12.2011	Антенну перемещают по нормали к испытуемому образцу 4 , измеряют U_{max} и U_{min} интерференции облучающего и отраженного сигналов. КО = $(U_{max} - U_{min})/2$	Достоинства Уменьшение габаритов и веса рефлектометра, что обеспечивает его мобильность и возможность измерения коэффициента отражения прямым способом в условиях производства радиопоглощающих материалов Недостатки Измерение только малых значений КО из-за возникновения резонансов при КО ≈1

№ патента/Название/ Дата опубликования	Суть тех	нического решения	Примечания
RU 2117952 Способ определения коэффициента отражения поверхности вещества 20.08.1998	Приемная антенна совмещена с пер изотропного отражателя на ис перемещается по нормали к пов фиксируются отношение максима мощностей; минимальная вы соответствующая максимуму при выполнять измерения комплекс различных веществ (например, по	редающей, ось ее направлена в точку проекции пытуемую подстилающую поверхность, а ерхности изотропный отражатель. При этом льной и минимальной принимаемых антенной ысота отражателя над границей раздела, инимаемого сигнала в антенне. Это позволяет ного коэффициента зеркального отражения оверхности грунта) на фиксированной частоте	Достоинства Повышение точности и снижение трудоемкости измерений КО от плоской поверхности вещества Недостатки Ограниченная точность прямого метода измерения Необходимость механических перемещений
SU 467298 Рефрактометр СВЧ 29.05.1973		ированном угле места С целью повышения точности в предлагаемом рефрактометре СВЧ каналы выполнены в виде дискриминаторов, содержащих разветвитель на два плеча. Сначала производится калибровка каналов, а затем один из резонаторов заполняется тестируемым веществом	Достоинства Метод сравнения с эталоном Повышение точности Недостатки Измерение параметров сред, вызывающих малые отражения Сложность измерительного тракта
RU 2207580 СВЧ-рефлектометр 27.06.2003	В состав СВЧ-рефлектометра введены специальным образом расположенные датчики, что при проведении соответствующей калибровки позволяет расширить рабочий диапазон рефлектометра		Достоинства Расширение полосы рабочих частот, повышение точности измерений Недостатки Измерение параметров сред, вызывающих малые отражения

№ патента/Название/ Лата опубликования	Суть технического решения	Примечания
US 5943136 Полное отражение в резонаторе для высокочувствительного измерения оптических свойств 24.08.1999	$Fig. 1$ 10^{10}_{160} 14^{14}_{18} 160^{14}_{18} 160^{14}_{18} 160^{16}_{16} 160^{16}_{16} 160^{16}_{16} 160^{16}_{16} 160^{16}_{16} 160^{16}_{12} 160	Достоинства Высокая точность Недостатки Оптический диапазон
US 5986768 Полное отражение в резонаторе для высокочувствительного измерения оптических свойств 16.10.1999	FIG. 2 Социальности и стенок оптического резонатора прикладывают вещество, характеристики поглощения которого хотят исследовать. По задержке проходящего через резонатор сигнала определяют коэффициент поглощения	Достоинства Высокая точность Недостатки Оптический диапазон
US 2008238405 Система ВЧ измерений 02.10.2008	В измерительной ВЧ системе использовано оптоволоконное оборудование. Два оптоволоконных тракта так включены в систему, чтобы иметь возможность сравнивать полученные сигналы	Достоинства Высокая точность Недостатки Оптический диапазон
US 2009167322	Метод заключается в передаче электромагнитного сигнала на вещество,	Достоинства ?
классификации вещества	определении коэффициента отражения вещества, используя измеренную часть	Недостатки
02.07.2009	электромагнитного сигнала. На основании полученного коэффициента отражения	Ограниченная точность прямого метода измерения
	проводится классификация вещества	Излучение сверх коротких импульсов

26

Поскольку рефлекторы зеркальных антенн имеют близкие к единице значения КО, то среди приведенных в таблице 1.1 решений следует обратить внимание на принцип многократных отражений как средство повышения точности измерения хорошо отражающих образцов. Такой прием органично реализуется в оптике [32, 33], и было бы полезно перенести его в диапазон СВЧ. Сделать это «механически» не удастся из-за того, что установка будет иметь слишком большие габариты.

1.3 Существующие способы измерения коэффициента отражения

Проведенный обзор публикаций и патентные исследования показывают, что к настоящему времени детально проработаны методики радиоизмерений в широком диапазоне радиочастот, включая метрологические аспекты и аппаратуру для их проведения, в части измерений параметров отраженных радиоволн. К их числу относятся:

- измерения коэффициентов отражения в волноводных трактах. В основу методик положены либо анализ интерференционной картины поля, осуществляемый в измерительных линиях, либо непосредственное выделение отраженных волн с использованием направленных ответвителей;
- измерения рассеивающих свойств радиолокационных целей. Эти методики, в большинстве случаев, ориентированы на определение эффективной площади рассеяния (ЭПР) типовых или конкретных объектов. Также целью измерений может являться определение отражающих свойств подстилающей поверхности, в частности диаграммы обратного рассеяния. Для решения перечисленных задач разработаны методики измерений и аппаратура, которые используют непосредственное измерение амплитуды отраженной волны при известных параметрах поля облучения;
- измерение отражающих свойств радиопоглощающих материалов (РПМ), а также объектов с низкой радиолокационной заметностью. В основу этих измерений также положен принцип непосредственных измерений параметров

отраженных волн, проводимых в условиях, исключающих влияние местных отражений от окружающих объектов.

Вышеприведенные методики радиоизмерений не в полной мере устраивают разработчиков, когда речь идет об определении отражающей способности рефлекторов космических аппаратов. И связано это в первую очередь с особенностями материалов, используемых для изготовления рефлекторов.

В настоящее время стандартным способом измерения КО углепластиковых материалов является «трактовый» способ с использованием измерительной линии требуемого частотного диапазона. Недостатком данного способа является малый размер оцениваемого образца (равный размеру сечения волновода), погрешность, связанная с измерением КО в закрытом тракте, а не в свободном пространстве, и высокая погрешность измерения, обусловленная погрешностью измерительных приборов.

При необходимости измерения КО металлического сетеполотна, появляются дополнительные трудности, связанные с тем, что сетеполотно рассчитано для использования при строго определенной степени натяжения, что требует использования специальных приспособлений (оправок), обеспечивающих требуемое натяжение при измерении, и при этом не возможно использование любых приемов, требующих обеспечения хорошего электрического контакта между элементами измерительного тракта и поверхностью образца материала, в том числе при любых трактовых измерениях, в которых участок материала выполняет функцию оконечной нагрузки.

1.4 Требования к процедуре измерения коэффициента отражения материалов рефлекторов антенн космических аппаратов

В связи с возрастающими требованиями по оптимизации массовых характеристик рефлекторов и возрастанием рабочих частот, производители вынуждены постоянно совершенствовать конструкцию изготавливаемых антенн космических аппаратов. Это становится возможным благодаря развитию различных технологий изготовления и появлению новых материалов. При

28

внесении в производственный процесс любых усовершенствований производится квалификация принятых решений на соответствие условиям эксплуатации. Ключевыми параметрами, на основании которых делается заключение о целесообразности внедрения усовершенствований, являются механическая прочность, точность и стабильность формы, и коэффициент отражения рабочей поверхности рефлектора. При достигаемое ЭТОМ путем вносимых усовершенствований улучшение радиотехнических характеристик является главным критерием внедрения инноваций.

Для повышения достоверности результатов измерений и качества контроля коэффициента отражения материалов рефлекторов космических аппаратов необходимо разработать способы, позволяющие обеспечить точность измерений порядка 1% для коэффициентов отражения близких к 1,0 (от 0,85 до 0,99) и проводить интегральную по площади оценку коэффициента отражения (на образцах с размером не менее 10 длин волн). Оборудование и специальная оснастка, используемая при проведении измерений, не должны вносить искажений в результаты измерений из-за деформации образцов.

1.5 Приборы, используемые при измерении коэффициентов отражения

Разработаны и выпускаются промышленностью приборы для измерения коэффициентов отражения, а также элементов матриц рассеяния устройств СВЧ, которые используются как измерительные средства в составе стендов измерения КО испытуемых образцов. В приложении к задаче измерения КО близкого к 1,0 основное внимание должно быть уделено точности измерений, которая будет предопределять инструментальную погрешность измерений.

К таким приборам относятся автоматические измерители КСВН и ослаблений типа P2-**, конкретные модели которых отличаются рабочим диапазоном частот. Перечень приборов этого типа с техническими характеристиками приведен в таблице 1.2.

29

Тип	Частоты	Тракт	Динамический диапазон	Погрешность
P2-132	0,01 ÷ 8,3 ГГц	коаксиал 7/3,04 мм	Коэффициента передачи (+40 ÷ -60) дБ Ксти 1.01 ÷ 2; 2 ÷ 5	0,01 – 2 ГГц: ±(0,25+0,015Ax½); 2 – 8,3 ГГц: ±(0,45+0,015Ax½) ±3 К %; ±5 К %,
P2-137	2 ÷ 8.3 ГГц 2. ÷ 18 ГГц	7/3.04 мм; 3.5/1.52 мм	Коэффициента передачи (+30 ÷ -50) дБ Ксти 1.05 ÷ 2; 2 ÷ 5	<u>+</u> (0.3+0.04 Ax) дБ ±3 К %; ±5 К %,
P2-140	0,01 ÷ 18 ГГц	коаксиал 7/3,04 мм	Коэффициента передачи (+40 ÷ -65) дБ	0,01 – 2 ΓΓιμ: ±(0,25+0,015 Ax); 2 – 12 ΓΓιμ: ±(0,45+0,015 Ax); 22 – 18 ΓΓιμ: ±(0,65+0,015 Ax);
P2M-40	0,01 ÷ 40 ГГц	коаксиал 2,4/1,04 мм	Коэффициента ослабления -50÷+20 дБмВт Ксти 1.05 ÷ 2; 2 ÷ 5	±(0,02* Ах +0,2 дБ) ±3 К %; ±5 К %,

Таблица 1.2 - Технические характеристики измерителей КСВ и ослаблений¹

Измерители типа Р4-** - это автоматические измерители комплексных коэффициентов отражения и передачи. Эти приборы выпускаются И отечественной промышленностью (фирма «Микран») И зарубежными производителями Agilent Technologies (США) и Rohde&Schwarz (Германия). Современные модели приборов этого типа имеют до 6 входов и называются анализаторами цепей. В таблице 1.3 приведены основные векторными характеристики таких приборов [76, 77].

¹ Ах – измеряемый уровень в децибелах; К – измеряемое значение Ксти.

Тип	Частоты	Тракт	Динамический диапазон	Погрешность
PK4-71/1	0,01 ÷ 2,1 ГГц	коаксиал 7/3,04 мм	Коэффициента передачи (+60 ÷ -90) дБ	±(0,3 + 0,04 Ax½) дБ
PK4-71/2	2÷8.3 ГГц	коаксиал 7/3,04 мм	Коэффициента передачи (+60 ÷ -90) дБ	±(0,3 + 0,04 Ax½) дБ
Agilent E8363B	0,01 ÷ 40 ГГц	коаксиал 2,4/1,04 мм	В зависимости от частоты: 119136 дБ (с опцией прямого доступа к ПРМ) 79122 дБ (без прямого доступа)	В зависимости от частоты и модуля коэффициента передачи: - погрешность измерения модуля коэффициента передачи ±(0,156,47)дБ; - погрешность измерения фазы коэффициента передачи от 0,67° до 6,65°; - погрешность измерения модуля коэффициента отражения ±(0,186,46)дБ; - погрешность измерения фазы коэффициента отражения от 1,2° до 9,83°
ZVA 50	0,01 ÷ 50 ГГц	коаксиал 2,4/1,04 мм	В зависимости от частоты: 125150 дБ (с опцией прямого доступа к ПРМ) 90130 дБ (без прямого доступа)	В зависимости от частоты и модуля коэффициента передачи: - погрешность измерения модуля коэффициента передачи ±(0,11,0)дБ; - погрешность измерения фазы коэффициента передачи от 1° до 6°; - погрешность измерения модуля коэффициента отражения ±(0,43)дБ; - погрешность измерения фазы коэффициента отражения от 3° до 20°.

Таблица 1.3 - Технические характеристики измерителей S-параметров

Приведенные в таблицах 1.2 и 1.3 данные для точностных характеристик приборов, применяемых в измерительных установках СВЧ и КВЧ диапазонов, свидетельствуют о том, что при непосредственном измерении КО близких к единице ($Ax \approx 0$ дБ) типичное значение погрешности превышает уровень ± 0.2 дБ.

1.6 Амплитудно-фазо-частотные характеристики коэффициента отражения для хорошо отражающих материалов

1.6.1 Коэффициент отражения от границы раздела сред

Главный фактор, предопределяющий коэффициент отражения электромагнитной волны от хорошо проводящих сред, углепластика и сетеполотна в TOM числе, является электрический ток, возбуждаемый электрическим полем падающей волны. Другой фактор, характерный для углепластика, - это токи смещения, обусловленные, во-первых, поляризацией во-вторых, молекул связующего компаунда, дипольными моментами, возникающими в местах разрыва нитей. Таким образом, углепластик в электродинамическом отношении представляет собой несовершенный диэлектрик высокой проводимостью g [CM/M]И c относительной С достаточно диэлектрической проницаемостью є', значение которой, быть может, заметно превышает диэлектрическую проницаемость собственно компаунда. Интересно и важно выяснить степень влияния диэлектрических свойств углепластика на величину КО.

Неидеальный диэлектрик формально [46, с. 243-248] является диэлектриком с комплексной диэлектрической проницаемостью $\mathcal{E} = \mathcal{E} - jg / \omega$ и, соответственно, комплексным волновым сопротивлением $\dot{Z} = Z_0 / \sqrt{\mathcal{E}' - jg / (\omega \mathcal{E}_0)}$. Для электромагнитной волны, распространяющейся в свободном пространстве, значение КО Γ от плоской границы с такой средой, оказывается равным

$$\dot{\Gamma} = (1 - \sqrt{\varepsilon' - jg/(\omega\varepsilon_0)})/(1 + \sqrt{\varepsilon' - jg/(\omega\varepsilon_0)}).$$
(1.1)

На рисунках 1.6 и 1.7 представлены результаты расчетов зависимостей модуля (жирные кривые, левая шкала) и аргумента (тонкие кривые, правая шкала) КО для трех значений частот 4.5 ГГц, 10 ГГц, 30 ГГц, соответствующих дециметровому (*C*), сантиметровому (*Ku*) и миллиметровому (*Ka*) диапазонам волн. По оси абсцисс откладываются значения десятичного логарифма от

величины проводимости g, выраженной, как обычно, в См/м. Проводимости меди $g_{M} = 5.7 \times 10^{7}$ См/м соответствует значение 7.76 на оси абсцисс справа за пределами графиков рисунков 1.6 и 1.7. На рисунке 1.6 в качестве фиксированного параметра выступает частота f_{o} , а на рисунке 1.7 – диэлектрическая проницаемость ε' .

Из приведенных данных следует, что в диапазоне значений модуля КО от 0.99 до 0.85 диэлектрическая проницаемость среды является мало значащим фактором, поэтому нет необходимости интересоваться ни тонкостями явлений, обусловливающих диэлектрические свойства углепластика, ни точным значением его диэлектрической проницаемости.

Рисунок 1.7 — Зависимости амплитуды и фазы КО от параметров среды

Если толщина d измеряемого образца заметно превышает толщину скин-слоя $\delta = \sqrt{2/\omega\mu g}$, то, благодаря затуханию в среде, наличие второй границы практически не сказывается на величине КО, и он равен КО от границы раздела сред. В противном случае КО зависит от толщины d. Выясним, при каких сочетаниях параметров необходимо учитывать конечную толщину образца.

1.6.2 Коэффициент отражения от слоя

Задачу об отражении плоской электромагнитной волны от слоя с учетом потерь энергии в среде удобнее решать с формальных позиций, используя общее решение однородного волнового уравнения среды²: $\exp(\dot{k}_x x) \exp(\dot{k}_y y) \exp(\dot{k}_z z)$. Постоянные распространения по декартовым координатам \dot{k}_x , \dot{k}_y , \dot{k}_z могут быть любыми комплексными величинами размерности [рад/м] с единственным ограничением: в совокупности они должны удовлетворять равенству $\dot{k}_x^2 + \dot{k}_y^2 + \dot{k}_z^2 = \dot{k}^2$. Здесь $\dot{k}^2 = \omega^2 \dot{\epsilon} \mu$ – квадрат комплексного волнового числа среды с потерями.

В случае электромагнитной волны поперечной поляризации, падающей на слой под углом θ (рисунок 1.8), вектора *E* всех волн параллельны границе слоя (кружочки на рисунке 1.8). Вектора *H* изображены пунктирными линиями. Поскольку фазовая структура падающей волны по координате *x* определяется выражением $\dot{E}_y = E_0 e^{-jk_0 \sin(\theta)}$ и не зависит от координаты *y*, то в силу граничных условий в среде 2 выполняются равенства $\dot{k}_y = 0$, $\dot{k}_x = -k_0 \sin(\theta)$. Поэтому для этой среды имеем $\dot{k}_z = \sqrt{\dot{k}^2 - (k_0 \sin(\theta))^2}$.

² Дело в том, что и в рамках геометрической оптики в случае полного внутреннего отражения приходится вводить формальное понятие мнимого угла преломления поскольку значение синуса соответствующего угла превышает единицу [46, с. 238].

Рисунок 1.8 - К расчету коэффициента отражения от слоя

системе четырех алгебраических уравнений

Обозначая через E_0 амплитуду падающей волны, а через $E_1 \div E_4$ – амплитуды вторичных волн, получаем следующие равенства для E_y составляющих электрического поля:

$$E_y = E_0 \exp(-j k_0 (x \sin \theta + z \cos \theta)) + E_1 \exp(-j k_0 (x \sin \theta - z \cos \theta)), \quad (\text{среда 1});$$

$$E_{y} = E_{2} \exp(-jk_{0}(x\sin\theta - (k_{z}/k_{0})z)) + E_{3} \exp(-jk_{0}(x\sin\theta + (k_{z}/k_{0})z)), \qquad (\text{среда 2});$$

$$E_{y} = E_{4} \exp(-j k_{0} (x \sin\theta + z \cos\theta))$$
 (среда 3).

Составляющие H_x выражаются через E_y соотношением $H_x = -j \frac{1}{\omega \mu} \frac{\partial E_y}{\partial z}$, вытекающим из второго уравнения Максвелла. Приравнивая касательные компоненты полей на границах слоя, приходим к

$$E_{0} + E_{1} = E_{2} + E_{3},$$

$$- E_{0} \cos\theta + E_{1} \cos\theta = -(\dot{k}_{z}/k_{0}) (E_{2} - E_{3}),$$

$$E_{2} \exp(-j\dot{k}_{z}d) + E_{3} \exp(j\dot{k}_{z}d) = E_{4},$$

$$- (\dot{k}_{z}/k_{0}) (E_{2} \exp(-j\dot{k}_{z}d) + E_{3} \exp(j\dot{k}_{z}d)) = -E_{4} \cos\theta.$$

(1.2)

Решая эту систему при $E_0 = 1$, находим значение E_1 , которое и есть КО.

Для случая параллельной поляризации вектора E и H меняются местами. Система уравнений относительно комплексных амплитуд *у*-компонент падающей (H_0) и вторичных (от H_1 до H_4) волн приводится к следующему виду:
$$H_{0} + H_{1} = H_{2} + H_{3},$$

$$(\dot{k}_{z}/k_{0}) \cos\theta (H_{0} - H_{1}) = H_{2} - H_{3},$$

$$H_{2} \exp(-j\dot{k}_{z}d) + H_{3} \exp(j\dot{k}_{z}d) = H_{4},$$

$$H_{2} \exp(-j\dot{k}_{z}d) - H_{3} \exp(j\dot{k}_{z}d) = -H_{4} (\dot{k}_{z}/k_{0}) \cos\theta.$$
(1.3)

Решая эту систему при $H_0 = 1$, находим значение H_1 , которое, собственно, и является значением КО. На рисунке 1.9 представлены зависимости КО от слоя толщиной d в зависимости от проводимости g при нормальном падении электромагнитной волны, когда перпендикулярная и параллельная поляризации эквивалентны друг другу. Здесь, как и прежде, жирные кривые (левая шкала) – это модуль КО, а тонкие сплошные (правая шкала) фаза КО. Тонкими пунктирными линиями представлен модуль КО при отражении от границы раздела сред (при d = ∞).

Естественно, что с уменьшением частоты и снижением проводимости материала толщина скин-слоя увеличивается, соответственно значение КО в большей степени зависит от толщины слоя. Так, например, при типичном значении толщины углепластиковых рефлекторов зеркальных антенн КА d = 0.75мм для *С*-диапазона конечную толщину слоя следует учитывать, если значения КО находятся в интервале от 0.85мм до 0.93мм.

Рисунок 1.9 – Коэффициент отражения от слоев разной толщины d

На рисунке 1.10 приведены расчетные зависимости, подтверждающие пренебрежимо малое влияние диэлектрической проницаемости среды на модуль КО и в случае слоя конечной толщины. При этом фаза КО тоже изменяется незначительно: в пределах 178° – 180°.

Рисунок 1.10 – Зависимость КО от диэлектрических свойств слоя при толщине d = 0,75мм

Поскольку основной рефлектор зеркальной антенны имеет параболическую форму, то облучающая волна падает на разные участки рефлектора под различными углами. Поэтому важно оценить изменения КО при наклонном падении на слой углепластика. Результаты расчетов представлены на рисунке 1.11 для двух поляризаций вектора Е: перпендикулярной плоскости падения (рисунок 1.11*a*) и параллельной ей (рисунок 1.11*б*). Формат рисунка (кривые, шкалы) тот же, что и у предыдущих рисунков. Жирные кривые – это модуль КО, они относятся к левой шкале. Тонкие кривые, относящиеся к правой шкале, – фаза КО.

У параллельной поляризации при скользящих углах падения наблюдается явление близкое к полному прохождению (эффект Брюстера), но в отличие от идеальных диэлектриков КО не приобретает нулевого значения. Мелкий рисунок справа вверху повторяет графики рисунка 1.116 в расширенном диапазоне

значений левой шкалы. Как видно, минимальное значение КО (при угле падения Брюстера) ограничивается уровнем ≈ 0.4.

б) — параллельная поляризация

Рисунок 1.11 – Коэффициент отражения от слоя при наклонном падении ЭМВ.

Ради общности расчетных результатов угол падения изменялся в полном диапазоне от 0° до 90°, хотя для длиннофокусных зеркал при типичном соотношении между раскрывом и фокусным расстоянием этот угол не выходит за пределы интервала от 0° до 25°.

1.7 Классификация способов измерения и алгоритмов обработки данных

Всякие измерения вообще и измерения КО в частности, могут осуществляться двумя путями: прямым (абсолютный метод) или косвенным (метод замещения).

Достоинство первого пути состоит в отсутствии методической погрешности (погрешности метода) благодаря тому, что в формировании измеряемого сигнала непосредственно участвуют те факторы и в тех проявлениях, которые имеют место в реальной ситуации. Так, например, в случае КО это электродинамические свойства материала, форма и шероховатость поверхности образца, наличие пленок и покрытий. Однако может оказаться, что в рамках прямых методов требуемая точность измерений недостижима из-за ограниченной точности существующей или доступной аппаратуры.

На рисунке 1.12 представлено тривиальное соотношение между процентными и "децибельными" мерами относительных погрешностей измерений: $\sigma[\%] = \begin{cases} 100 \cdot (10^{0.1 \cdot \sigma[\partial E]} - 1) \\ 100 \cdot (10^{0.05 \cdot \sigma[\partial E]} - 1) \end{cases}$. Заданная точность в 1%, если требования относить к КО, который является амплитудным коэффициентом, означает предельно допустимую аппаратурную погрешность измерений не хуже 0,086 дБ.

Жирными стрелками на оси абсцисс отмечены левые границы интервалов погрешностей двух измерительных приборов. В частности, измеритель модуля коэффициента отражения и передачи Р2М-40 в соответствии с паспортными данными на его технические характеристики имеет погрешность измерения ослабления ±(0,02*A+0,2 дБ), где А – измеряемая величина в дБ. Предельная точность измерителя Р4М-18, перекрывающего лишь два частотных диапазона (С и Ku), выше и практически удовлетворяет требованиям к точности прямых измерений. Естественно, не исключается возможность существования или появления в ближайшем будущем более точных приборов, информация о которых в настоящее время недоступна.

Рисунок 1.12 – Погрешности измерений

Если измерения КО осуществляются ради оценки КПД рефлектора и вызванного этим снижения КУ зеркала, и требования по точности относятся соответственно к "мощностному" параметру, то допустимая аппаратурная погрешность не должна превышать 0,046 дБ, – уровень, заметно отличающийся от характеристик указанных приборов.

Косвенные способы измерений, как правило, привносят методическую погрешность, но их преимущество перед прямыми методами состоит в том, что влияние аппаратурной погрешности может быть в значительной мере ослаблено за счет обостренной зависимости измеряемого косвенного параметра от тех же факторов, что и интересующий экспериментатора параметр.

Естественно, что при окончательном выборе метода измерений наряду с фактором точности следует учитывать конструктивные и экономические характеристики установки/стенда и оборудования. К числу наиболее значимых особенностей измерений КО хорошо отражающих образцов следует отнести:

- требуемый диапазон значений измеряемых коэффициентов отражения от 0.85 до 0.99. Уже это обстоятельство исключает использование приемов, основанных на непосредственной регистрации отраженной волны, т.к. для этого требовалось бы проводить соответствующие измерения с относительной погрешностью порядка 10⁻³÷10⁻⁴ (рисунок 1.12), что практически нереально;
- обстоятельства, связанные с принципом организации измерений и интерпретацией полученных данных.

Ввиду важности этих обстоятельств имеет смысл остановиться на них несколько подробнее.

При рассмотрении метрологических аспектов радиоизмерений как основные источники погрешности обычно рассматриваются методические, обусловленные принципом осуществления измерений, и аппаратурные, связанные со свойствами измерительных инструментов. В ряде специфических задач, в частности для измерений параметров ЭМС радиокомпонент, принимается во внимание еще один источник погрешности, а именно отличие объекта измерений от приписываемой ему модели (см. например, [47]). В данном случае существование этого вида погрешности определяется рядом обстоятельств.

Во-первых, по смыслу задачи требуется осуществлять контроль отражающих свойств не материалов вообще, а материалов, используемых в конструкциях рефлекторов зеркальных антенн.

Поэтому при оценке отражающих свойств материала следовало бы иметь в виду то, что различные участки поверхности рефлектора облучаются под различными углами по отношению к местной нормали. Поскольку принцип действия зеркальной антенны заключается в организации надлежащей ориентации отраженных лучей, качество материала рефлектора тем выше, чем ближе к значению 1,0 коэффициент отражения для соответствующего участка его поверхности. Значение 1,0 достигается для случая идеально проводящего материала независимо от величины угла падения волны и ее поляризации. Любым

рефлекторов соответствуют значения коэффициента реальным материалам отражения несколько меньшие единицы (по модулю). Для отражения электромагнитных волн на плоской границе раздела сред - «воздух-материал», значение коэффициента отражения, определяемое известными соотношениями (см. например, [48]) зависит как от угла падения, так и поляризации падающей волны. Таким образом, для исчерпывающей характеристики отражающих свойств материалов рефлекторов следовало бы оценивать угловые зависимости коэффициентов отражения соответственно различным углам падения волны для случаев как горизонтальной, так и вертикальной поляризации.

На рисунке 1.13 приведены расчетные зависимости коэффициентов отражения для случаев горизонтальной $\Gamma(\theta)_{zop}$ и вертикальной $\Gamma(\theta)_{sepm}$ поляризации падающей волны. Приведенные данные соответствуют случаю падения плоской однородной волны на бесконечную плоскую границу раздела «воздух- неидеальный проводник». Приведенные данные наглядно иллюстрируют различие отражающих свойств при разных углах падения и различной поляризации падающей волны.

Рисунок 1.13 - Зависимость коэффициента отражения от угла падения

Для зеркальных антенн в большинстве случаев не характерно выполнение их в виде короткофокусных систем с рефлекторами значительной кривизны. Поэтому в большинстве практических случаев диапазон углов падения волны не превышает значения порядка 25 градусов. Кроме того, электрические параметры материала таковы, что коэффициент отражения при нормальном падении не менее величины порядка 0.95. Как показывают результаты расчетов согласно известным формулам Френеля [49], (рисунок 1.14) для указанного диапазона значений углов падения и коэффициентов отражения при нормальном падении различия величин коэффициента отражения не выходят за пределы диапазона ± 0.006.

Рисунок 1.14 - Относительная погрешность от угла падения для значения Г при нормальном падении 0.9575

Таким образом, применительно к рассматриваемой задаче (контроль отражающих свойств материалов рефлекторов зеркальных антенн) можно не принимать во внимание существование отмеченных выше отличий.

Во-вторых. Строго говоря, для диапазона радиочастот использование понятия коэффициент отражения корректно в двух случаях: в отношении отраженной волны в волноводе при условии одномодового режима И ДЛЯ описания амплитуды отраженной волны при падении однородной плоской волны на плоскую и идеально гладкую границу раздела двух сред с различающимися значениями характеристических сопротивлений. При наличии на указанной границе мелкомасштабных неровностей, говоря об отражающих свойствах, более характеристику корректно рассматривать рассеяния, включающую преобладающую зеркальную компоненту и характеристику диффузного рассеяния (часто характеризуемую законом Ламберта). Исходя из смысла исходной задачи, следует признать, что наибольшую практическую роль играет зеркальная компонента, именно ee величина отвечает запланированное Т.К. 3a

функционирование зеркальной антенны. Наличие шероховатости поверхности приводит к снижению значения зеркальной компоненты. Согласно классической модели отражения радиоволны от шероховатой поверхности с мелкомасштабным рельефом [50], значение коэффициента отражения с удовлетворительной точностью определяется выражением (1.4),

$$|\Gamma| \approx \exp(\frac{(-4\pi\sigma_{III} \setminus \lambda)^2}{2})$$
 (1.4)

где σ_{III} и λ - СКО высот шероховатостей и длина волны соответственно.

На рисунке 1.15 приведены рассчитанные по (1.4) значения зеркальной компоненты при различных СКО высот шероховатостей и длин волн.

Рисунок 1.15 - Зависимость погрешности Г от СКО неровностей поверхности

Из приведенных данных видно, что при типовых характеристиках шероховатости поверхности значимые отличия от случая идеальной гладкой поверхности проявляются только для КВЧ диапазона. Для этих ситуаций вопрос о влиянии шероховатости следует рассмотреть более внимательно, для более низкочастотных диапазонов – можно не принимать в расчет.

1.8 Выводы по Главе 1

1.8.1 Среди запатентованных в течение последних двадцати лет технических решений по измерению КО заметная часть решений касается:

а) измерений в оптике и тепловом диапазоне;

б) измерений малых КО, свойственных РПП;

в) измерений прямыми методами, в том числе при облучении сверх короткими импульсами.

Повышению точности измерения близких к единице КО не уделяется должного внимания.

1.8.2 Инструментальная погрешность большинства современных приборов составляет не менее 0,2 дБ, что обуславливает погрешность прямых методов измерений КО значениями 2,3% по амплитуде (4,6% по мощности).

1.8.3 Из приведенных расчетных данных следует, что:

- в диапазоне значений КО от 0.85 до 0.99 превалирующим фактором является проводимость среды, а влияние диэлектрической проницаемости пренебрежимо мало;
- при толщине слоя 0.75мм можно не учитывать влияние конечной толщины на значение КО за исключением ситуаций, соответствующих С-диапазону частот и интервалу КО от 0.85 до 0.93;
- коэффициенты отражения при наклонном падении ЭМВ для обеих поляризаций мало отличаются друг от друга и стабильны в диапазоне углов падения до 25°, причем диапазон углов расширяется с ростом частоты и увеличением проводимости слоя.

Измерению КО образцов 1.8.4 композитных материалов присущи характерные особенности, затрудняющие непосредственный перенос традиционных методик. В частности, при наличии диэлектрической пленки на поверхности становится проблематичным осуществление материала гальванического контакта с измерительной установкой.

1.8.5 Таким образом, разработка способов и средств измерения близких к единице КО актуальна и требует оригинальных технических решений.

Глава 2 Измерение коэффициента отражения в волноводном тракте

2.1 Существо и основные особенности трактовых способов

При трактовых измерениях образец исследуемого материала помещается в некоторый замкнутый волноводный объем (рупор, отрезок волновода и т.п.) в качестве концевой нагрузки [73]. Оценка отражающих свойств осуществляется путем измерения параметров падающей и отраженной волн в отрезке волновода, для которого указанный объем является нагрузкой (рисунок 2.1).

Рисунок 2.1 - К измерению трактовыми способами

Если материал «априори» обладает высокой однородностью, в большинстве случаев достаточным является проведение измерений на образце небольших размеров, в том числе порядка половины длины волны. В этих случаях наиболее простым является использование отрезка волновода стандартного сечения, на одном из концов образцом исследуемого материала. Это закороченного устройство присоединяется к измерительной линии или одному из плеч Т-моста стандартного волноводного фланца. Измеренное при помощи значение коэффициента отражения Гизи будет отличаться от величины, соответствующей нормальному падению плоской волны в свободном пространстве, причем это отличие имеет систематический характер и может быть довольно значительным [83]. Действительно, в свободном пространстве

$$\Gamma_{o\delta p} = \frac{Z_s - Z_c}{Z_s + Z_c} \tag{2.1}$$

где Z_s и Z_c - характеристические сопротивления материала и свободного пространства.

В волноводе с волной Н₁₀

$$\Gamma_{GOЛH} = \frac{Z_s - Z_c / \sqrt{1 - (\frac{\lambda}{2a})^2}}{Z_s + Z_c / \sqrt{1 - (\frac{\lambda}{2a})^2}},$$
(2.2)

где а – поперечный размер волновода.

Оценки согласно (2.1) и (2.2) показывают, что отличие значений $\Gamma_{o\delta p}$ и $\Gamma_{волн}$ при типичных размерах волновода в одномодовом режиме могут быть заметными (рисунок 2.2).

Рисунок 2.2 - Зависимость абсолютной погрешности измерения от величины коэффициента отражения

При необходимости контролировать коэффициент отражения более крупных образцов материала, имеющих размеры апертуры L_{anept} не менее 5...10 длин волны, образец помещают в торце рупора достаточно большой длины (порядка L_{anept}^2/λ). Рупор присоединяется к измерительной линии или одному из плеч Т-моста при помощи стандартного волноводного фланца.

Измеренное значение коэффициента отражения $\Gamma_{\mu_{3M}}$ также будет отличаться от соответствующей величины в свободном пространстве, причиной чего является трансформация сопротивления нагрузки Z_s участком тракта, заключенным между входным фланцем и торцом рупора. На рисунках 2.3 – 2.4 представлены расчетные зависимости погрешности величины измеренного коэффициента отражения, соответствующие его измерению через реактивный четырехполюсник, характеризуемый величиной КСВ (т.е. величиной S_{11} его матрицы рассеяния) при коэффициенте отражения от нагрузки. Важно подчеркнуть, что указанная погрешность возрастает для нагрузок с большим коэффициентом отражения³.

Рисунок 2.3 - Зависимость максимально возможного отклонения измеренного значения Γ от истинного от величины КСВ при Γ_{odp} =0.95

Рисунок 2.4 - Зависимость максимально возможного отклонения измеренного значения Γ от истинного от величины КСВ при $\Gamma_{o\delta p} = 0.5$

Приведенные оценки показывают, что при отсутствии специально принятых погрешность измерения коэффициентов отражения образцов хорошо мер отражающих Ниже материалов оказывается довольно значительной. рассматриваются приемы, направленные на снижение указанной погрешности. Существо их состоит в осуществлении специальной обработки результатов измерений.

³ Действительно, при КСВ=1.1 для нагрузки с истинным Γ=0.5 измеренное значение может находиться в пределах 0.43...0.57, что практически почти одно и то же. Для Γ=0.95 – измеренное значение может быть в пределах 0.85...1, что свидетельствует о неудовлетворительной точности измерения.

в волноводе

Наиболее простой послеизмерительная обработка является в случаях осуществления измерения коэффициента отражения, в которых исследуемый образец является оконечной нагрузкой волновода стандартного сечения. В этом случае алгоритм восстановления искомого значения коэффициента отражения заключается в нахождении значения сопротивления нагрузки Z_s по измеренному коэффициенту отражения в волноводе $\Gamma_{волн}$ с последующим вычислением искомого значения $\Gamma_{обр}$.

Нахождение Z_s по значению $\Gamma_{волн}$ осуществляется путем решения уравнения (2.2) и легко осуществляется стандартными численными методами. В первом приближении

$$Z_s = R_s + jR_s, \tag{2.3}$$

где

$$R_{s} = (1 - \Gamma_{u_{3M}}) Z_{c} / 2 \sqrt{1 - (\frac{\lambda}{2a})^{2}} . \qquad (2.4)$$

На рисунке 2.5 показаны зависимости погрешности определения коэффициента отражения – непосредственно измеренного и восстановленного с учетом погрешности измерения, равной ±0.1 дБ.

Рисунок 2.5 - Абсолютная погрешность измерения коэффициента отражения в волноводе с λ\λ_{xp} = 0.75

К обработке данных измерений коэффициента отражения.

Измерение коэффициента отражения производятся с использованием коаксиально-волноводного перехода (рисунок 2.6)

Рисунок 2.6 - Схема измерений

В результате измеренное значение $\Gamma_{u_{3M}}$ будет отличаться от Γ_{H} , а эти отличия будут иметь вид осциллирующей зависимости от частоты. На рисунке 2.7 показана иллюстрирующая частотная зависимость.

Г_н=0.95, длина кабеля – 20 длин волн, КСВ = 1.1 Переход представлен как включение последовательного комплексного сопротивления Рисунок 2.7 - Зависимость Г_{изм} от относительной частотной расстройки в полосе 20%

Для устранения погрешности предлагается использовать следующую обработку данных измерений в полосе частот:

- 1. Производится предварительная калибровка. Для этого измеряются значения *Γ*_{изм эт}(*f*) при известной калибровочной нагрузке с *Γ*_{*μ*} = *Γ*_{эт};
- 2. Определяется среднее значение его модуля

$$\tilde{\Gamma}_{_{U3M \ 9T}} = \left(\frac{1}{f2 - f1}\right) \int_{f1}^{f2} \left| \Gamma_{_{U3M \ 9T}}(f) \right| df;$$

- 3. Находится поправка $\Delta \Gamma_{_{u_{3M}, 9T}} = |\Gamma_{_{9M}}| \tilde{\Gamma}_{_{u_{3M}, 9T}};$
- 4. Измеряется коэффициент отражения нагрузки $\Gamma_{u_{3M} harp}(f)$;
- 5. Определяется среднее значение его модуля

$$\tilde{\Gamma}_{u_{3M} \text{ Harp}} = \left(\frac{1}{f 2 - f 1}\right) \int_{f 1}^{f 2} \left| \Gamma_{u_{3M} \text{ Harp}}(f) \right| df;$$

6. Вычисляется значение коэффициента отражения нагрузки как

$$\Gamma_{\rm Harp} = \tilde{\Gamma}_{\rm изм \ Harp} + \Delta \Gamma_{\rm uзм \ эт}.$$

Ниже приводятся результаты моделирования, подтверждающие правомерность описанного способа измерения (рисунки 2.8 – 2.10). Измеряемый коэффициент отражения равен 0.9.

Моделирование проводилось для следующих исходных данных:

- КСВ перехода соответствует использованию модели перехода в виде последовательного комплексного сопротивления с различными значениями активной и реактивной частей;
- полоса частот 20%;
- длина кабеля 20 длин волн на средней частоте полосы;
- калибровочная нагрузка с модулем Г_{эт}, равным 0.95.

Рисунок 2.8 – Результаты моделирования при реактивности 0.05

Рисунок 2.9 - Результаты моделирования при реактивности 0.075

Рисунок 2.10 - Результаты моделирования при реактивности 0.1

Результаты показывают, что абсолютная погрешность измерений снижается существенно. Так, при КСВ перехода равном 1.2, абсолютная погрешность составляет 8×10^{-3} , а при КСВ перехода до 1.1, абсолютная погрешность не превышает $(2...4) \times 10^{-3}$.

в рупоре

В случаях, когда измерение коэффициента отражения осуществляется с использованием рупора, для которого исследуемый образец является оконечной нагрузкой, также возможно проведение процедуры восстановления измеряемого $\Gamma_{u_{3M}}$ коэффициента отражения по измеренному значению коэффициента отражения во входном сечении рупора, нагруженного образцом измеряемого Рассмотрим волноводный участок, ограниченный выходным материала [82]. сечением рупора и его входным сечением. При симметричном выполнении и достаточно большой длине рупора можно считать, что электромагнитное поле в указанных сечениях представляет собой совокупность H_{10} , волн обоих распространяющихся направлениях, характеризуется В И соответствующими амплитудами падающих и отраженных волн⁴. Это означает возможность использовать для анализа классические приемы теории цепей СВЧ, а именно аппарат волновых матриц. Пусть <S> – матрица рассеяния указанного четырехполюсника. Тогда входной коэффициент отражения имеет вид:

(2.5)

Восстановление $\Gamma_{o\delta p}$ по измеренному значению Γ_{pyn} может быть осуществлено путем решения уравнения (2.5) относительно искомого $\Gamma_{o\delta p}$. Для этого может быть реализована следующая процедура, состоящая из двух шагов. На первом шаге проводятся измерения входного коэффициента рупора $\Gamma_{pyn i}$ для нескольких калибровочных «нагрузок» с известными коэффициентами отражения Γ_{3m} *i*. В качестве калибровочных наиболее целесообразно использовать короткозамыкатели различной электрической длины: $\Gamma_{3m i} = e^{-j\phi_i}$. По измеренным значениям $\Gamma_{pyn i}$ определяются коэффициенты матрицы рассеяния S_{jk} . Решение системы уравнений осуществляется численным методом минимизации невязки

$$\|\Gamma_{pyn} - \Gamma_{pyn}(S_{11}, S_{12}, S_{22})\| \to \underbrace{\min}_{[s]}.$$
(2.6)

⁴ При условии несовпадения частоты колебаний с резонансными частотами объемного резонатора, образованного закороченным на конце рупором

На втором этапе производится измерение входного коэффициента отражения рупора с исследуемым образцом Γ_{pyn} . Искомое значение Γ_{ofp} находится из решения уравнения (2.5) при известных S_{jk} и Γ_{pyn} относительно неизвестного Γ_{ofp} . На этом этапе, хотя и возможно аналитическое решение, более целесообразно также воспользоваться численным методом минимизации невязки

$$\left\| \Gamma_{pyn} - \Gamma_{pyn} (\Gamma_{o\delta p}) \right\| \to \underbrace{\min}_{\Gamma_{o\delta p}}$$
(2.7)

Таким образом, процедура реконструкции значения *Гобр* при измерении с использование рупора представляется как [83]:

Ниже приводятся данные, иллюстрирующие применение предлагаемой процедуры.

Рассматривается пирамидальный рупор длиной $L_{pyn} \ge A_{anepm}^2 / \lambda$, где A - максимальный размер апертуры, нагруженный в раскрыве плоским образцом материала с коэффициентом отражения $\Gamma_{o\delta p}$. При размере апертуры более нескольких длин волн различие между коэффициентом отражения в волноводе и свободном пространстве несущественно и $\Gamma_{60ЛH} \approx \Gamma_{o\delta p}$. Считаем, что преобразование $\Gamma_{60ЛH}$ в измеряемое значение Γ_{pyn} определяется соотношением (2.1). Моделирование проводилось следующим образом:

1. Вводилась модель рупора. Матрица рассеяния его определялась согласно методике [4, 7] как матрица рассеяния неоднородной линии передачи в виде ступенчатого перехода от сечения с размерами стандартного волновода до размеров выходного сечения рупора. Рассчитывалась матрица передачи каждой из М ступенек $<T>_i$ длиной ΔL с отношением нормированных сопротивлений $R_i = \sqrt{1-(\frac{\lambda}{2A_i})^2} / \sqrt{1-(\frac{\lambda}{2A_{i+1}})^2}$, где A_i – поперечный размер рупора

в і-м сечении и электрической длиной $2\pi \frac{\Delta L}{\lambda} \sqrt{1 - (\frac{\lambda}{2A_i})^2}$. Матрица передачи совокупности ступенек определялась как $\langle T \rangle_{pyn} = \prod_i^M \langle T \rangle_i$. По найденной матрице передачи рассчитывалась матрица рассеяния $\langle S \rangle_{pyn} = \langle S \rangle (\langle T \rangle_{pyn})$ по известным соотношениям [4, 7];

- По известной <S>_{руп} находился входной коэффициент отражения Γ_{руп} для заданного образца материала Γ_{обр}. Указанная величина соответствует измеренному значению коэффициента отражения с использованием данного рупора, а величина ΔΓ_{изм} = ||Γ_{oбp}| |Γ_{pyn}|| представляет собой погрешность измерения, обусловленную трансформацией коэффициента отражения;
- Проводились «измерения» входных коэффициентов отражения Γ_{pyn i} для калибровочных нагрузок Γ_{эm i}. Измерения соответствовали преобразованию коэффициента отражения четырехполюсником с матрицей рассеяния <S>_{pyn} с учетом погрешностей измерения: Γ_{δpyn i}=Γ_{pyn i} (1+δ_i), где δ_i относительная погрешность измерения;
- 4. Восстанавливались значения элементов матрицы рассеяния $\langle S \rangle_{pyn \ восст}$ по известным Γ_{3mi} . и «измеренным» $\Gamma_{\delta pyni}$;
- 5. Восстанавливалось значение коэффициента отражения образца $\Gamma_{omp\ вoccm}$ по найденной матрице рассеяния $\langle S \rangle_{pyn\ восст}$ и измеренному входному коэффициенту отражения рупора с учетом того, что указанное значение отличается от истинного Γ_{pyn} на величину погрешности измерения - $\Gamma_{pyn\ \delta} = \Gamma_{pyn\ i} (1+\delta_{u_{3M}})$. При осуществлении операций по п.п. 3 и 5 использовались паспортные данные об относительной погрешности измерений используемых измерительных приборов типа R&S ® ZVA40 [51];
- 6. Проводилось сравнение изначально задаваемого значения $\Gamma_{o \delta p}$. со значениями Γ_{pyn} непосредственным результатом измерений и восстановленным значением $\Gamma_{o \delta p \ вoccm}$.

Проведенное моделирование показало действенность предложенной процедуры. Так при исходном коэффициенте отражения $|\Gamma_{o\delta p}|=0,96$ его измеренное значение (вследствие трансформации) определяется абсолютной погрешностью $\Delta\Gamma_{u_{3M} o\delta p} \approx 0,045$. При измерениях согласно описанной методике, абсолютная погрешность снижается примерно на порядок: при относительной погрешности измерений $\delta_{u_{2M}} = \pm 0,025$ абсолютная погрешность восстановленного значения $|\Gamma_{o\delta p}|$ не превышает 0.0028, а при относительной погрешности измерений $\delta_{u_{3M}} = \pm 0,025$ абсолютная погрешности измерений о погрешности измерений 0.0043.

2.4 Дифференциальные способы измерения коэффициента отражения

Непосредственное измерение коэффициентов отражения, значение которых по модулю близко к единице, как уже отмечалось, требует измерения электрических величин (напряжений, амплитуд волн и т.п.) с высокой точностью, практически недостижимой традиционными измерительными приборами. Например, для измерении прямыми методами коэффициента отражения, равного 0.95 в допустимых границах от 0.945 до 0.955, требуемое значение относительной погрешности измерения амплитуд падающей и отраженной волн порядка 3.5х10⁻³.

Дифференциальные способы позволяют в значительной мере снизить требования к допустимой относительной погрешности измеряемых величин. Дифференциальные способы могут быть реализованы в различных вариантах – как квазиоптическими методами в пространстве, так и на основе измерений в волноводных трактах. Среди последних наиболее приемлемыми являются измерения с использованием измерительной линии и на основе использования мостовых устройств СВЧ.

Измерения на основе измерительной линии.

Схема измерения коэффициента отражения (рисунок 2.11) является классической [73]. В результате интерференции падающей и отраженной волн в измерительной линии формируется картина распределения поля, характерная для

режима смешанных волн и представляющая собой периодическое чередование «узлов» и «пучностей» интенсивности поля.

Рисунок 2.11 - Схема с использованием измерительной линии.

В простейшем варианте осуществления измеряемое значение коэффициента отражения *Г* находят по значениям наибольшего и наименьшего значений в интерференционной картине распределения интенсивности поля вдоль измерительной линии :

$$\Gamma = \frac{U_{\text{max}} - U_{\text{min}}}{U_{\text{max}} + U_{\text{min}}} , \qquad (2.8)$$

С учетом того, что измерения максимального и минимального напряжений вдоль измерительной линии производится с относительными погрешностями δ1 и δ2, измеренное значение коэффициента отражения равно

$$\Gamma_{_{U3M.}} = \frac{1 - K \mathcal{E}B(\Gamma) \cdot (1 + \delta 1 - \delta 2)}{1 + K \mathcal{E}B(\Gamma) \cdot (1 + \delta 1 - \delta 2)} , \qquad (2.9)$$

где КБВ – коэффициент бегущей волны в линии, соответствующий коэффициенту отражения со значением *Г*.

Отличие измеренных значений от истинных в этих случая достаточно мало. Как иллюстрация, может рассматриваться результат моделирования соотношения (2.9), где относительные погрешности измерения $\delta 1$ и $\delta 2$ рассматривались как равномерно распределенные случайные величины в пределах $\pm 10\%$ (рисунок 2.12).

Рисунок 2.12 – Отклонение истинного и измеренного значений коэффициента отражения при *Г*=0.95

Зависимость максимально возможного отклонения истинного и измеренного значений *Г*, рассчитанная согласно (2.9) при различных значениях измеряемого коэффициента отражения приведена на рисунке. 2.13

Рисунок 2.13 – Зависимость максимально возможного отклонения измеренного и истинного значений коэффициента отражения от величины Г.

Измерение с использованием мостовых устройств.

Второй способ имеет в основе использование мостовых устройств СВЧ. Простейший вариант с использованием двойного Т-моста показан на рисунке 2.14

60

Рисунок 2.14 - Схема измерения с использованием Т-моста

Измерения осуществляются следующим образом. В режиме калибровки в качестве калибровочной нагрузки используется короткозамыкатель с коэффициентом отражения 1,0 и согласованная нагрузка во втором плече. Измеренное значение напряжения $U_{\kappa a \pi u \delta p}$ пропорционально амплитуде падающей волны, измеряемое с относительной погрешностью $\delta 2$ В режиме измерения в это плечо помещается измеряемая нагрузка и определяется с относительной погрешностью $\delta 1$ напряжение в разностном канале $U_{u_{3M}}$ пропорциональное разности коэффициентов отражения от калибровочной и измеряемой нагрузок. Искомая величина – разность коэффициентов отражению и измеряемой нагрузок равна их отношению

$$\Gamma_{\text{утал}} - \Gamma_{\text{изм}} = U_{\text{изм}} / U_{\text{кал}}$$
(2.10)

С учетом погрешностей δ2 и δ1 абсолютное отклонение истинного и измеренного значений равно

$$\Delta\Gamma_{_{\mathcal{U}\mathcal{M}}} = (1 - \Gamma)(\delta 1 - \delta 2) \le 2(1 - \Gamma)(\delta 1) \tag{2.11}$$

Для наглядности указанная зависимость приведена на графике (рисунок 2.15).

Относительная погрешность измерения напряжений 5 и 10%. По оси абсцисс – величина 1-Г Рисунок 2.15 -Зависимости отклонения истинного и измеренного значений коэффициента отражения

Как показывают приведенные данные, существует принципиальная возможность измерения коэффициентов отражения близких к единице (по модулю). При этом требований к прецизионному измерению напряжений не выдвигается. В этом случае мостовые способы выглядят предпочтительнее с точки зрения меньшей критичности результата измерений по отношению к относительной погрешности измерения соответствующих амплитудных значений. Это положение наглядно показывает сравнение абсолютных погрешностей измерения.

Относительная погрешность измерения напряжений 5 и 10%. По оси абсцисс – величина 1-Г

Рисунок 2.16 - Отношение абсолютных погрешностей измерения с помощью измерительной линии и Т-моста

62

Модифицированный способ измерения с использованием мостовых устройств

Мостовые измерения, описанные выше, требуют высокой идентичности калибровочного и измерительного каналов. Неидентичность каналов приводит к ошибке измерения коэффициента отражения, равной

$$\delta \Gamma_{_{U3M}} = 2(S_{13}^2 - (1 - S_{13}^2)(1 - \Delta \Gamma) - 0.5\Delta \Gamma)$$
(2.12)

где S_{13}^2 -отклоняется от значения 0.5 на х дБ.

Расчетная зависимость абсолютной погрешности измерения коэффициента отражения приведена на рисунке 2.17.

Рисунок 2.17 - Зависимость абсолютной погрешности измерения коэффициента отражения от неравномерности коэффициентов деления х

Из приведенных оценок видно, что требуется весьма высокая идентичность каналов, требующая для ee достижения специальных мер. Требуемая может быть достигнута путем идентичность введения в каналы моста подстроечных элементов. Необходимая подстройка состоит в обеспечении выходного сигнала в разностном канале порядка минус 50 дБ при включении в выходные плечи идентичных калибровочных нагрузок.

Требование высокой идентичности каналов может быть снижено при использовании модифицированной схемы измерения, показанной на рисунке 2.18

Рисунок 2.18 - Модифицированная схема измерений

Измерения проводятся в следующей последовательности:

- В один из каналов помещают согласованную нагрузку, в другой калибровочный отражатель с коэффициентом отражения близким к единице и измеряют напряжение на выходе синхронного детектора △U₁^{кал};
- 2. Затем нагрузки меняют местами и измеряют напряжение $\Delta U_2^{\kappa a_1}$;
- Повторяют измерения напряжения на выходе синхронного детектора еще два раза для обоих положений калибровочной и измеряемой нагрузок ΔU₁^{изм}
 и ΔU₂^{изм};
- 4. Искомое значение $(1 \Gamma_{u_{3M}})$ находят как

$$(1 - \Gamma_{u_{3M}}) = \frac{\Delta U_1^{u_{3M}} + \Delta U_2^{u_{3M}}}{\Delta U_1^{k_{a1}} + \Delta U_2^{k_{a1}}}$$
(2.13)

Абсолютная погрешность измерения величины $(1 - \Gamma_{u_{3M}})$ при этом не превышает значения $4\delta_U(1 - \Gamma)$; где δ_U - относительная погрешность измерения напряжений.

2.5 Выводы по главе 2

2.5.1 Проведен анализ факторов, влияющих на точность прямых измерений коэффициентов отражения хорошо проводящих материалов, осуществляемых в радиочастотных трактах. Показано, что без принятия специальных мер по снижению погрешностей измерения результирующие оценки измеренных значений КО близких к единице могут иметь недостаточную точность. Выявлены основные источники указанных погрешностей и определены направления работ по их снижению.

2.5.2 Для прямых измерений, осуществляемых в волноводных трактах, предложена процедура восстановления значения КО, соответствующего отражению в поле плоской волны по измеренному значению в волноводе стандартного сечения. Показано, что использование предложенной процедуры, а также усреднения данных измерений в полосе частот позволяет существенно снизить погрешность измерения КО в волноводном тракте.

2.5.3 Предложена и протестирована процедура восстановления истинного значения КО, измеряемого в радиочастотных трактах и искаженного вследствие трансформации коэффициента отражения. Процедура включает предварительное определения трансформирующих свойств участка измерительного тракта по данным измерений калибровочных нагрузок и последующее восстановление действительного значения КО, по его измеренному трансформированному значению . Проведенное имитационное моделирование показало устойчивость предложенной процедуры к погрешностям измеренных величин, а также снижения KO. возможность погрешности измерения обусловленной трансформацией КО в радиочастотном тракте, не менее чем в несколько раз.

2.5.4 Для повышения точности измерений КО близких к единице предложен модифицированный мостовой способ измерения, позволяющий устранить влияние погрешности измерения, обусловленной несимметрией используемых мостовых устройств. На указанный способ получен Патент РФ на изобретение [80].

Глава 3 Измерение коэффициента отражения сетеполотна в поле прошедшей волны

3.1 Физические основы

Рассмотрим нормальное падение плоской электромагнитной волны с амплитудой $E_{\Pi A Z}$ на неограниченный плоский образец материала [79, 87]. Имеет место ее отражение от границы и прохождение с амплитудами $E_{\text{ОТР}}$ и $E_{\Pi P O Ш}$ (рисунок 3.1).

Рисунок 3.1 – К обоснованию способа измерения

Если толщина слоя материала значительно меньше длины волны, количественную связь между ними можно определить, используя эквивалентную схему в виде четырехполюсника с сосредоточенной нагрузкой (рисунок 3.2).

Рисунок 3.2 - Эквивалентная схема

Матрица рассеяния *«*S> имеет вид [2]:

$$\langle S \rangle = \begin{bmatrix} \frac{y}{2+y} \frac{2}{2+y} \\ \frac{2}{2+y} \frac{y}{2+y} \end{bmatrix},$$
 (3.1)

где $y = Z_c / Y;$

Y и Z_c – комплексная поверхностная проводимость и характеристическое сопротивление соответственно.

Преставление в форме (3.1) позволяет установить однозначную. связь комплексных значений коэффициентов отражения и прохождения:

$$S_{11} = 1 - S_{21} \tag{3.2}$$

Это означает, что при принятых допущениях коэффициент отражения можно однозначно определить по комплексному значению коэффициента прохождения.

В случаях, когда заведомо можно пренебречь потерями в материале сетеполотна, искомый коэффициент отражения может быть определен по значению модуля коэффициента прохождения, т.е. без измерения его фазы:

$$S_{11} = \sqrt{1 - |S_{21}|^2} \tag{3.3}$$

3.2 Реализация способа измерения

3.2.1 Способ измерения

Способ измерения, принцип которого описан выше, может быть реализован с использованием установки, показанной схематически на рисунке 3.3.

Рисунок 3.3— Схема измерительной установки

Установка состоит из миниатюрной безэховой камеры, передающего и приемного рупоров. В камере в строго фиксируемом положении устанавливается исследуемый образец, причем конструкция предусматривает возможность быстрой замены образцов. При возбуждении передающего рупора со стороны его входа комплексная амплитуда волны, принимаемой приемным рупором в общем случае может быть представлена как результат интерференции волны с амплитудой $k^2 S_{21}$, прошедшей через образец материала и волны, распространяющейся помимо образца k_0 :

$$S_{21\Sigma} = k_0 + k^2 S_{21}, \qquad (3.4)$$

где S₂₁ - коэффициент прохождения плоской волны через образец.

Осуществляются три измерения: без образца, с хорошо проводящим металлическим образцом и исследуемым образцом, причем считается, что оба образца идентичны по форме и размерам:

$$\mathbf{S}_{21\Sigma}^{(1)} = k_0 + k^2 \quad , \tag{3.5}$$

$$S_{21\Sigma}^{(2)} = k_{0}, \qquad (3.6)$$

$$\mathbf{S}_{21\Sigma}^{(3)} = k_0 + k^2 \,\mathbf{S}_{21} \,. \tag{3.7}$$

Из соотношений (3.5) - (3.7) следует, что:

$$S_{21} = \frac{S_{21\Sigma}^{(3)} - S_{21\Sigma}^{(2)}}{S_{21\Sigma}^{(1)} - S_{21\Sigma}^{(2)}}, \qquad (3.8)$$

а искомый коэффициент отражения равен:

$$S_{11} = \sqrt{1 - \left| \frac{S_{21\Sigma}^{(3)} - S_{21\Sigma}^{(2)}}{S_{21\Sigma}^{(1)} - S_{21\Sigma}^{(2)}} \right|^2}$$
(3.9)

3.2.2 Оценка погрешности измерения

Будем считать, что величины $S_{21\Sigma}^{(n)}$, полученные в результате измерений, определены с погрешностями амплитуды и фазы $\Delta_{\omega n}$

$$\mathbf{S}_{21\Sigma\delta}^{(n)} = \mathbf{S}_{21\Sigma}^{(n)} (1 + \delta_{Sn} + j \Delta_{\varphi n}), \qquad (3.10)$$

Соответственно, найденное значение коэффициента отражения будет отличаться от истинного:

$$\Delta S_{11} = \frac{S_{21\Sigma}^{(1)} - S_{21\Sigma}^{(3)}}{S_{21\Sigma}^{(1)} - S_{21\Sigma}^{(2)}} - \frac{S_{21\Sigma\delta}^{(1)} - S_{21\Sigma\delta}^{(3)}}{S_{21\Sigma\delta}^{(1)} - S_{21\Sigma\delta}^{(2)}}$$
(3.11)

Наиболее простой путь оценки погрешности ΔS_{11} состоит в непосредственном статистическом моделировании, считая погрешности δ_{Sn} и $\Delta_{\phi n}$ центрированным некоррелированными случайными величинами,

характеризуемыми соответствующими среднеквадратическим значениями. Результаты моделирования позволяют оценить значения погрешности измерений в зависимости от значений СКО погрешностей δ_{Sn} и $\Delta_{\phi n}$ и параметров, характеризующих измерительную установку k_0 и k^2 . На рисунке 3.4 как иллюстрация показан результат одного из опытов.

Рисунок 3.4 - Результат моделировании S₁₁

В результате обработки данных статистического моделирования, проведенного для различных значений СКО погрешностей δ_{Sn} и $\Delta_{\phi n}$ и параметров k_0 и k^2 , выявлены следующие закономерности:

- 1. Результирующая погрешность измерения коэффициента отражения помимо очевидной зависимости от δ_{Sn} и $\Delta_{\varphi n}$ существенно зависит не только от значений k_0 и k^2 , но и соотношения между ними. При этом погрешность измерения быстро возрастает по мере роста k_0 и уменьшения k^2 (рисунок 3.5);
- 2. Погрешность измерения возрастает с ростом истинного значения измеряемого коэффициента отражения. Так при значениях k^2 =-40 дБ и k_0 =-35 дБ значения погрешностей измерения составляют $\approx 6 \times 10^{-3}$ и 10^{-2} для истинных значений $|S_{11}|$ =0.925 и $|S_{11}|$ =0.974 соответственно.

Истинное значение $|S_{11}|=0.974$, $\delta_{Sn}=0.2 \text{ дБ}, \Delta_{on}=3^{0}$

Истинное значение $|S_{11}|=0.974$, $\delta_{Sn}=0.35$ дБ, $\Delta_{\phi n}=5^{0}$

Рисунок 3.5 - Зависимость погрешности определения коэффициента отражения для различных *k*₀ и *k*²

 Результирующая погрешность может быть приемлемо малой, что означает принципиальную возможность осуществления рассмотренного способа измерения при типовых показателях точности существующих измерительных приборов.

3.2.3 Требования к составным частям установки

Техническая реализация способа измерений, описанного выше, требует проведения ряда оценок, а также выработки рационального алгоритма процедуры измерений и их обработки. Оценки относятся к формулировке требований к параметрам установки, влияние которых рассмотрено выше.

Геометрические размеры установки

Поскольку, как это показано выше, погрешность восстановления коэффициента отражения по результатам измерений возрастает при уменьшении коэффициента связи антенн, важно оценить рациональные значения расстояния между антеннами и размеры их апертур (рисунок 3.6)

70

Рисунок 3.6 - Основные геометрические соотношения

Геометрические размеры R, L_a , L_{ofp} должны отвечать ряду условий:

- образец должен облучаться плоской однородной электромагнитной волной. Отсюда следует, что:

$$R > (L_{\text{obp}})^2$$
 M $2 R \operatorname{tg}(\theta_{0.5}) > L_{\text{obp}}$ (3.12)

или приближенно :

$$R > L_a L_{odp} / \lambda$$
 (3.13)

Поскольку размер образца, очевидно, превышает размер апертуры, условие (3.13) является более жестким и должно приниматься в качестве требования при конструировании установки. Минимальные размеры установки при этом могут составлять для размера образца диаметром 10 λ около 20 λ.

Размер апертуры излучателя и требования к диапазону измеряемых величин

Согласно рассматриваемому способу измеряемыми величинами являются коэффициенты передачи между входами излучателей $S_{21\Sigma}^{(1)}$, $S_{21\Sigma}^{(2)}$, $S_{21\Sigma}^{(3)}$. Оценим сначала наибольший из них.

$$S_{21\Sigma}^{(1)} \approx K Y^2 \lambda^2 / (8\pi R)^2$$
 (3.14)

где КУ – коэффициент усиления излучателя с апертурой *L*_a

$$KY = 4 \pi \left(L_a / \lambda \right)^2 \tag{3.15}$$

Таким образом, S₂₁₂⁽¹⁾ по порядку величины равно:

$$S_{21\Sigma}^{(1)} \approx (L_a/2L_{obp})^2$$
 (3.16)

Имея в виду габариты установки в целом, характерным размером апертуры целесообразно считать величину порядка длины волны, что при размере образца 10 λ дает величину $S_{21\Sigma}^{(1)}$ около -26 дБ. Значение $S_{21\Sigma}^{(2)}$ меньше в S_{21} раз. Таким образом, при $|S_{11}|=0.95$ $|S_{21}| \approx -10$ дБ, $|S_{11}|=0.975$ - $|S_{21}| \approx -13$ дБ, $|S_{11}|=0.99$ - $|S_{21}| \approx -17$ дБ.

Из приведенных оценок следует, что минимальные значения измеряемого коэффициента передачи будут не менее -36 ...-43 дБ. С учетом желательного превышения над предельным минимальным значением измерения коэффициента передачи на 5...10 дБ, последний составит величину -41...-53 дБ, что вполне соответствует возможностям современных векторных анализаторов параметров цепей типа ZVA-40 или аналогичных.

Требования к степени безэховости камеры и степени устранения прямого прохождения волны

Как было установлено в процессе моделирования, наличие прямого прохождения волны существенно снижает точность определения искомого коэффициента отражения. Это означает, что конструкция камеры установки должна обеспечивать достаточно малое значение параметра k_0 при, по возможности, большем значении коэффициента связи антенн (параметр k^2). Полученная в процессе моделирования расчетная зависимость погрешности определения $|S_{11}|$ от значений коэффициента связи (параметр k^2) показана на рисунке 3.7.

1.- $\delta_{Sn} = 0.2 \ \text{дБ}, \Delta_{\phi n} = 3^{\circ}, 2$ - $\delta_{Sn} = 0.35 \ \text{дБ}, \Delta_{\phi n} = 5^{\circ}$ Рисунок 3.7 - Допустимые значения параметров k_0 и k^2 при погрешности определения $|S_{11}|$ не более 0.02.
Поскольку, как показано выше, минимальная величина k^2 составляет (с запасом 10 дБ) около 36 дБ, величина прямого прохождения не должна превышать значений от минус 42 до минус 35 дБ.

Требования к степени безэховости камеры определяются малостью искажений, обусловленных «попаданием» лучей, отраженных образцом и стенками на передающий излучатель и аналогичных на приемном конце. Точная оценка их влияния затруднительна, однако по порядку величины амплитуды их должны быть значительно меньше измеряемых величин. Для типовых радиопоглощающих материалов коэффициент отражения составляет от минус 25 до минус 30 дБ. Это означает, что камера должна иметь такую форму, чтобы любые отраженные волны попадали на передающий или приемный излучатель после как минимум двукратного отражения от стенок. Конструирование камеры с указанными свойствами не представляет принципиальных трудностей.

Обработка данных измерений

С принципиальной точки зрения восстановление значения измеряемого коэффициента отражения по измеренным значениям коэффициента прохождения осуществляется согласно алгоритму (3.9). Для повышения точности измерения целесообразно использовать данные нескольких независимых измерений с последующим усреднением. Усреднение может быть применено к измеряемым величинам $S_{21\Sigma\delta}^{(n)}$, восстановленным значениям $|S_{11}|$ и др. Проведенное статистическое моделирование показало, что наименьшая погрешность определения $|S_{11}|$ достигается в случае использования усреднения значений $S_{21\Sigma\delta}^{(n)}(f_m)$ для ряда частот. Значения S_{11m} вычисляются согласно (3.9) и затем усредняются:

$$\left|S_{11}\right| = \left|\frac{1}{M}\sum_{m=1}^{M}S_{11m}\right|$$
 (3.17)

Результаты оценки погрешностей при обработке согласно этому алгоритму показаны на рисунке 3.8.

73

Истинное значение $|S_{11}| = 0.925$, $\delta_{\text{Sn}} = 0.35 \text{ дБ}, \ \Delta_{\varphi n} = 5^{0}$ Истинное значение $|S_{11}| = 0.974$, $\delta_{\text{Sn}} = 0.35 \text{ дБ}, \ \Delta_{\text{on}} = 5^{0}$

Рисунок 3.8 - Зависимость погрешности определения $|S_{11}|$ для различных значений параметров k_0 и k^2

3.3 Выводы по главе 3

3.3.1 В результате проведенных оценок показано, что при рациональном выборе параметров установки и использовании существующего измерительного оборудования возможно проведение измерений коэффициента отражения сетчатых материалов посредством измерения коэффициентов прохождения с последующей алгоритмической обработкой полученных данных.

3.3.2 Проведены оценки достижимой точности измерений. Показано, что может быть обеспечена точность измерения абсолютного значения модуля коэффициента отражения не хуже ±0.01...0.02.

3.3.3 Получены оценки влияния степени безэховости камеры и прямого прохождения волны на значения составляющих погрешности измерения, обусловленной указанными факторами.

3.3.4 Для достижения указанной точности необходимо обеспечить установленные требования к степени безэховости камеры и степени устранения прямого прохождения волны.

3.3.5 Получены оценки характерных геометрических соотношений, отражающих требования к функционированию измерительной установки в заявляемом качестве.

74

Глава 4 Измерение коэффициента отражения с использованием многократных отражений в полуоткрытом резонаторе

4.1 Электродинамика полуоткрытого резонатора

В оптике для повышения точности измерения физических параметров сред широко используется эффект многократного отражения световой волны от измеряемого образца, например в многоходовой кювете Уайта [52]. В СВЧ и КВЧ диапазонах подобный эффект можно получить в полуоткрытом⁵ резонаторе из полностью отражающего металлического параболоида вращения со слабонаправленным облучателем в вершине и испытуемым образцом, который размещен перпендикулярно оси параболоида по середине между апертурой облучателя и фокусом параболоида (рисунок 4.1) [84, 88].

Рисунок 4.1 - Оптическая схема полуоткрытого резонатора: параболическое зеркало и плоский образец

⁵ Строго говоря, подобные резонаторы называются открытыми. Использование термина «полуоткрытый резонатор» подчеркивает то обстоятельство, что зазор между параболическим зеркалом и плоским рефлектором-образцом достаточно мал.

Габариты параболического зеркала и плоского образца составляют $\approx 10\lambda$, поэтому физику процессов, протекающих в полуоткрытом резонаторе, можно описать в рамках геометрической оптики [46, 48] следующим образом.

Сферическая электромагнитная волна (ЭМВ) облучателя (рисунок 4.2а) после зеркального отражения от плоского образца падает на зеркало, как если бы излучалась из фокуса. Соответственно зеркало формирует участок плоской ЭМВ (рисунок 4.2б), которая в свою очередь отражается от образца и облучает зеркало на подобие ЭМВ, приходящей из бесконечности по оси параболоида (рисунок 4.2в). Поэтому отраженное от параболоида поле представляет собой сферическую ЭМВ, сходящуюся в точку фокуса и после очередного (третьего по счету зеркального отражения от образца) сходится к облучателю (рисунок 4.2г).

Рисунок 4.2 - Физика процессов в приближении геометрической оптики

Естественно, основная часть энергии этой сходящейся волны поступает в облучатель, а остальная отражается, создавая волну по фазовой структуре аналогичную первичной сферической волне. В принципе, подобный процесс повторяется многократно, всякий раз, значительно ослабляясь, поскольку кроме потерь энергии за счет неполного отражения поля от образца (эффект подлежащий измерению), некоторая часть энергии теряется на излучение в свободное пространство. По сути, рассматриваемая система является открытым резонатором, который сильно нагружен на хорошо согласованный облучатель. На этапе калибровки установки по калибровочному образцу (или нескольким образцам) регистрируются данные, позволяющие при обработке результатов измерений испытуемого образца учесть рассеивание энергии резонатора. На рисунке 4.3. представлена обобщенная схема установки с полуоткрытым резонатором и векторным анализатором для измерения частотной характеристики $S_{11}(f)$ [78, 85, 86]. Так как вход широкополосного анализатора коаксиальный, то для его подключения к резонатору используется соответствующий переход.

Рисунок 4.3 - Обобщенная схема установки

4.2 Частотная характеристика отражений на входе облучателя

Примем мощность и соответственно амплитуду первичной падающей волны на входе облучателя за единицу. Отраженная (на входе облучателя в фидере) волна представляет собой интерференцию четырех волн.

<u>Во-первых</u>, это волна, соответствующая отражению из-за неидеального согласования облучателя в отсутствии образца. Обозначим ее комплексную амплитуду через S_0 . Для прямоугольного рупора со сторонами раскрыва *a* и *b* значение S_0 может быть найдено как коэффициент отражения в фидере с характеристическим сопротивлением $Z_s = Z_0 / \sqrt{1 - (\lambda/2a)^2}$, нагруженном на волновое сопротивление свободного пространства $Z_0 = 120\pi$ [Ом]

$$S_0 = (Z_0 - Z_6) / (Z_0 + Z_6).$$
(4.1)

Из-за не идеального согласования рупора относительная мощность P_{Σ} , излучаемая облучателем, уменьшается до значения $P_{\Sigma} = (1 - |S_0|^2)$.

<u>Во-вторых</u>, это волна, принимаемая после первого отражения от образца. Ее комплексную амплитуду *S*₁ можно найти как амплитуду ЭМВ, принимаемой

апертурой а*b (размер раскрыва облучателя) от источника сферической ЭМВ, расположенного на фокусном расстоянии $L_{\phi o \kappa}$. С учетом КО от образца (равного Γ) мощность этого источника составляет $P_{\Sigma}*|\Gamma|^2$. Поэтому из уравнения радиосвязи [53] применительно к идентичным рупорам, находящимися на расстоянии $L_{\phi o \kappa}$ друг от друга, получаем следующую оценку мощности P_1 волны S_1 : $P_1 = P_{\Sigma} |\Gamma|^2 (ab\eta / \lambda L_{\phi o \kappa})^2$, где η – это КИП апертуры рупора, равный 0.8 для типичного распределения амплитуды по раскрыву в соответствии с волной H_{10} . Вообще говоря, часть принятой энергии отразится от рупора, интерферируя с первичным излучением рупора. Но в виду малости мощности P_1 по сравнению с P_{Σ} и хорошего согласования рупора можно пренебречь вторичными отражениями. С учетом "пройденного волной" расстояния $L_{\phi o \kappa}$ комплексная амплитуда рассматриваемой волны оценивается значением

$$\dot{S}_{1} = \frac{0.8\sqrt{1 - \left|\dot{S}_{0}\right|^{2}}\dot{\Gamma}ab}{\lambda L_{\phi o \kappa}} \exp(-jkL_{\phi o \kappa} + \psi_{1})$$
(4.2)

где *k* – волновое число свободного пространства;

*ψ*₁ – фазовый сомножитель, учитывающий неопределенность электрического пути до входа облучателя.

Полагая, что в полосе частот $\pm (10 \div 20)\%$ фазовый сомножитель Ψ_1 не изменяется, можно будет подобрать его значение (равно как и других заранее не известных фазовых сомножителей) из условия наилучшего приближения расчетной частотной зависимости $S_{ex}(f)$ коэффициента отражения на входе облучателя на этапе калибровки по калибровочному образцу.

<u>В-третьих</u>, система "зеркало+образец" перехватывает часть сферической волны в пределах телесного угла 2 Ψ_0 , определяемого геометрией системы (рисунок 4.1), которая переносит мощность $P_{\Sigma 2} = P_{\Sigma} \gamma$, где коэффициент γ определяет долю перехватываемой мощности. С учетом ДН рупора в главных плоскостях [54]

$$F_{E}(\theta) = \frac{1 + (\lambda/\lambda_{e})\cos\theta}{1 + \lambda/\lambda_{e}} \frac{\sin(\frac{\pi b}{\lambda}\sin\theta)}{\frac{\pi b}{\lambda}\sin\theta}$$
(4.3)

$$F_{H}(\theta) = \left(\frac{\pi}{2}\right)^{2} \cos\theta \frac{\cos\left(\frac{\pi a}{\lambda}\sin\theta\right)}{\left(\frac{\pi}{2}\right)^{2} - \left(\frac{\pi a}{\lambda}\sin\theta\right)^{2}}$$
(4.4)

находятся коэффициенты $\gamma_{E_{\text{r}}}\,\gamma_{H}$ перехвата в плоскостях E и H

$$\gamma_E = \frac{2}{\pi} \int_0^{\Psi_0} F_E^2(\theta) \sin(\theta) d\theta, \qquad \gamma_H = \frac{2}{\pi} \int_0^{\Psi_0} F_H^2(\theta) \sin(\theta) d\theta \qquad (4.5)$$

и коэффициент γ определяется как среднегеометрическое от частных коэффициентов (4.5).

В результате отражения от зеркала формируется участок плоского фронта волны, который, отразившись от образца, вновь падает на зеркало. Поскольку на этом этапе нет расходимости лучей, то плотность потока мощности можно считать не зависящей от пройденного пути. За счет отражения от образца происходит уменьшение интенсивности поля, определяемое значением коэффициента отражения равного Γ . Центральный участок фронта проходит путь $2\frac{L_{\phi o \kappa}}{2}$. Таким образом, в рупоре появляется еще одна отраженная волна, распространяющаяся от раскрыва рупора к его входу. Комплексная амплитуда этой волны с учетом сказанного равна

$$\dot{S}_2 = \dot{S}_1 \dot{\Gamma} \exp(-jkL_{dos} + \psi_2) \tag{4.6}$$

<u>В-четвертых</u>, в результате отражения от зеркала и образца формируется сферическая ЭМВ, сходящаяся к рупору. Она переносит мощность $P_3 = P_{\Sigma 2} |\Pi^6 \beta$. Сомножитель $|\Pi^6$ учитывает трехкратное отражение первичной волны от образца (каждый раз мощность ослабляется, как $|\Pi^2$); коэффициент β учитывает эффекты дополнительного рассеяния/высвечивания энергии из полуоткрытого резонатора, образованного параболическим зеркалом и образцом. Сходящаяся к рупору ЭМВ формирует в фидере на входе рупора отраженную волну

$$\dot{S}_{3} = \sqrt{P_{\Sigma 2} (1 - |S_{0}|^{2} \dot{\Gamma}^{3} \beta \exp(-j3kL_{\phi \sigma \kappa} + \psi_{3})}$$
(4.7)

Значения коэффициента β и фазового сдвига Ψ_3 вычисляются на этапе калибровки. Суммируя комплексные амплитуды всех отраженных волн (4.1), (4.2), (4.6), (4.7), получаем коэффициент отражения $S_{11}(f)$ на входе облучателя в присутствии образца (калибровочного или испытуемого)

$$\dot{S}_{11}(f) = \dot{S}_0 + \dot{S}_1 + \dot{S}_2 + \dot{S}_3 \tag{4.8}$$

В правую часть равенства (4.8) частота *f* входит через λ в выражении (4.1) для S_0 и через волновое число $k = 2\pi / \lambda$, фигурирующее в выражениях (4.2), (4.6), (4.7) комплексных амплитуд S_1, S_2, S_3 .

4.3 Предварительная оценка точности измерения КО

По сути, измерения с использованием предложенного полуоткрытого резонатора относятся к резонаторным методам измерения электродинамических параметров веществ, широко используемым на практике, благодаря обостренной зависимости резонансной частоты от диэлектрической проницаемости, а добротности – от потерь, что способствуют снижению погрешностей измерений. Поэтому для предварительной оценки выигрыша в точности по сравнению с КО. представляется прямыми методами измерений целесообразным рассматривать полуоткрытый резонатор как прямоугольный резонатор (тех же волновых размеров), чтобы воспользоваться известной методикой расчета добротности [46]. Расчетные формулы при этом слегка изменятся с учетом того, что одна из стенок образована испытуемым образцом и имеет отличную от остальных проводимость.

При резонансной моде типа E_{mnp}⁶, по стенкам параллельным оси z текут поверхностные токи η с единственной отличной от нуля z-составляющей (рисунок 4.4).

⁶ Имеется в виду традиционная привязка системы координат к резонатору.

Рисунок 4.4 – Прямоугольный резонатор

Собственная добротность резонатора определяется отношением энергии, запасенной внутри резонатора, и энергии тепловых потерь за период колебания в его стенках P_{II} [46]: $Q = 2\omega_0 W/P_{II}$.

Энергия, запасенная в резонаторе, определяется интегрированием по объему *v* объемной плотности энергии магнитного поля: $W = \frac{1}{2} \mu_0 \cdot \int_V |\vec{H}|^2 d\upsilon = \frac{1}{2} \mu_0 \vec{W}$, здесь через \vec{W} обозначено значение интеграла $\int_V |\vec{H}|^2 d\upsilon$. Учитывая выражения для компонент вектора \vec{H} , легко получить

$$\widetilde{W} = \int_{v} \left| \vec{H} \right|^{2} dv = \left(\frac{\omega \varepsilon}{k_{c}^{2}} \right) \cdot \left[\left(\frac{n\pi}{b} \right)^{2} + \left(\frac{m\pi}{a} \right)^{2} \right] \cdot \frac{a^{2}b}{8}$$
(4.9)

Мощность потерь (как поток вектора Пойнтига в стенки резонатора) связана с касательными составляющими вектора **H**

$$P_{\Pi} = \frac{1}{4} \omega_0 \mu_0 \delta \oint_{S} \left| \vec{H}_{\tau} \right|^2 ds \qquad (4.10)$$

где $\delta = \sqrt{\frac{2}{\omega \mu_0 g}}$ – толщина скин-слоя материала стенок (g – проводимость этого

материала).

Обозначим через \tilde{P} значение интеграла в приведенном выражении. Учитывая формулы для соответствующих компонент вектора \vec{H}_{τ} и то обстоятельство, что в рассматриваемом случае проводимость всех стенок резонатора равна проводимости меди $\delta_{M} = 5.7 \times 10^7$ [Сим/м] за исключением проводимости δ_{II} донышка/образца, получаем

$$\tilde{P}_{\Pi} = 2 \cdot \delta_{M} \frac{(\omega \varepsilon)^{2}}{k_{c}^{2}} \cdot \frac{ab}{4} + 2 \cdot \delta_{M} \frac{(\omega \varepsilon)^{2}}{k_{c}^{4}} \cdot \left(\frac{m\pi}{a}\right)^{2} \cdot \frac{ab}{4} + \left(\delta_{M} + \delta_{\Pi}\right) \frac{(\omega \varepsilon)^{2}}{k_{c}^{4}} \cdot \left(\frac{n\pi}{b}\right)^{2} \cdot \frac{a^{2}}{4} \quad (4.11)$$

Окончательно добротность объемного резонатора вычисляется с учетом (4.9) и (4.10) следующим образом:

$$Q = 2 \cdot \omega_0 \frac{W}{P_{\pi}} = \frac{\frac{1}{2} \mu_0 \cdot \int |\vec{H}|^2 d\upsilon}{\frac{1}{4} \omega_0 \mu_0 \delta \oint_{s} |\vec{H}_{\tau}|^2 ds} = 2 \frac{\vec{W}}{\vec{P}_{\pi}}$$
(4.12)

На рисунке 4.5 представлены расчетные зависимости собственной (не нагруженной) добротности прямоугольного резонатора $a = l = 9\lambda$ b = 2.5 λ на частоте 25 ГГц. Варьировалась проводимость *g* образца и по формуле (1.1) рассчитывался его КО и эта величина служила осью абсцисс графика.

Рисунок 4.5 - Зависимости $Q(|\Gamma|)$ и $\xi(|\Gamma|)$

В современных панорамных измерителях коэффициентов передачи и отражения частота сигнала генерируется с точностью до герца, поэтому главным фактором, ограничивающим точность измерения добротности, является погрешность отсчетов амплитуд частотной характеристики. Не вдаваясь в детали, будем считать, что относительная погрешность измерения добротности не превышает 5%. Дифференцируя функцию Q(g), а затем функцию $\Gamma(g)$ можно получить громоздкие аналитические выражения для производной $d\Gamma/dQ$, значение

которой определяет чувствительность результатов восстановления КО к погрешностям измерения добротности.

Представленные на рисунке 4.5 вычисленные зависимости $Q(|\Gamma|)$ помечены выноской "добротность" и относятся к левой шкале. К правой шкале относятся коэффициент ξ , равный отношению относительных погрешностей измерения добротности и вызванной этим погрешности определения КО: $\xi = (dQ/Q) / (d\Gamma/\Gamma)$. Таким образом, этот коэффициент характеризует выигрыш в точности восстановления значения КО по сравнению с точностью измерения добротности. Результаты расчетов свидетельствуют о том, что чем ближе значение КО к единице, тем точнее оно измеряется. Такая закономерность обусловлена в основном, характером зависимости КО от проводимости *g* (рисунок 4.6).

Рисунок 4.6 - Погрешности определения КО и проводимости образца

На рисунке 4.6 приведена типичная зависимость $\Gamma(g)$ и демонстрируется изменение допустимого интервала Δg погрешности определения проводимости для двух значений Γ равных 0.895 и 0.985. Причем следует иметь в виду, что проводимость g на рисунке 4.6 отложена в логарифмическом масштабе. Реально при линейном масштабе изображения эффект расширения допустимого интервала погрешности Δg еще более резок. При КО равном 0.85 (нижняя граница диапазона измерений) коэффициент ξ равен \approx 7, таким образом, точность измерения КО в 1%

вполне достижима с использованием прямоугольной резонаторной камеры при относительной погрешности измерения добротности порядка 5% ÷ 7%. Расчеты показывают, что зависимости $\xi(|\Gamma|)$ в диапазонах *C*, *X*, и *K* практически одинаковы.

4.4 Методика вычисления КО по результатам измерений

Понятно, что электромагнитные волны, поступающие в облучатель после многократных отражений, складываются (интерферируют) друг с другом с фазовыми набегами, которые в зависимости от частоты изменяются в значительных пределах. Поэтому измерение на фиксированной частоте амплитуды отраженной волны на входе облучателя не позволяет выявить КО образца, из-за большой доли неопределенности как интенсивности этих волн, так и, главным образом, разности фаз между ними. Поэтому методика измерений неизбежно должна базироваться на анализе частотной зависимости $S_{11}(f)$ амплитуды и фазы отраженной волны на входе облучателя.

В соответствии с физикой процессов, происходящих в рассматриваемой системе, представим отраженную волну в виде следующей суммы

$$S_{11}(f) = S_{pyn}(f) + e^{-j\beta(f)2L_B} \left[\sum_{n} \alpha_n e^{-j\beta_0 n L_{\phi o \kappa}} + \alpha_{\kappa p} e^{-j\beta_0 L_{\kappa p}} \right]$$
(4.13)

где $S_{pyn}(f)$ – коэффициент отражения рупора-облучателя в отсутствии образца в раскрыве зеркала; в квадратных скобках представлена комплексная амплитуда всех волн, приходящих к апертуре рупора; сомножитель $exp(-j\beta(f) 2L_B)$ пересчитывает комплексные амплитуды от сечения апертуры рупора к его входу, т.е. к сечению, в котором измеряется коэффициент отражения рупора. L_B – это длина волноводной части от входного фланца рупора до его апертуры (коэффициент 2 учитывает разнонаправленные сдвиги фаз падающей и отраженной волн в волноводе); $\beta(f) = 2\pi \sqrt{1 - (c/2af)^2} f/c$ – фазовая постоянная волны H₁₀ прямоугольного волновода шириной *a*.

Комплексные коэффициенты α_n , соответствующие амплитудам и фазам отраженных волн, заранее не известны. Число этих волн N_{max} выбирается на этапе

настройки алгоритма вычисления КО и, скорее всего, должно быть в пределах от шести до девяти. Путь, проходимый отраженной волной после *n*-кратного отражении от образца, составляет $nL_{\phi o \kappa}$, и поскольку распространение происходит в свободном пространстве, то фазовая постоянная соответствует волновому числу свободного пространства $\beta_0 = 2\pi f/c$. Последнее слагаемое в квадратных скобках учитывает краевую волну от края образца. $L_{\kappa p}$ – это расстояние от центра апертуры рупора до края образца⁷.

Естественно считать, что в относительно узком частотном диапазоне $f_{min} < f < f_{max}$ искомые коэффициенты { α_n } и $\alpha_{\kappa p}$ от частоты не зависят, и равенство (4.13), по сути, является системой K_{max} комплексно-значных алгебраических уравнений относительно $N_{max} + 1$ искомых коэффициентов

$$\sum_{n=1}^{N\max} \alpha_n e^{-j(2\pi f_k/c)nL_{\phi o \kappa}} + \alpha_{\kappa p} e^{-j(2\pi f_k/c)L_{\kappa p}} = (S_{11}(f_k) - S_{pyn}(f_k)) e^{j\beta(f_k)2L_B}$$
(4.14)

В правой части уравнений фигурируют частотные зависимости измеренных на входе рупора коэффициентов отражения (традиционно обозначенных как элементы матрицы рассеяния) в присутствии образца $S_{11}(f_k)$ и то же, измеренное на этапе калибровки в отсутствии всякого образца $S_{pyn}(f_k)$, т. е. первичные отражения самого рупора. Число K_{max} частотных отсчетов f_k существенно превышает число искомых коэффициентов, и решение системы (4.14) понимается В смысле наилучшего среднеквадратичного приближения. Алгоритм соответствующих вычислений удобнее записать в компактной матричной форме. Составляется вектор-столбец а из $N_{max}+1$ искомых коэффициентов. Совокупность коэффициентов $a_{kn} = e^{-j(2\pi f_k/c)nL_{\phi o \kappa}}$ и $a_{k,N max+1} = e^{-j(2\pi f_k/c)L_{\kappa p}}$ образуют прямоугольную матрицу <A> из K_{max} строк ($k = 1...K_{max}$) и N_{max} +1 столбцов. Из значений правых частей (4.14)системы $b_k = (S_{11}(f_k) - S_{pyn}(f_k)) e^{j\beta(f_k)^{2L_B}}$ составляется K_{max} -мерный вектор-столбец \vec{b} . Тогда система (4.14) преобразуется к матричному виду

⁷ В случае образца квадратной формы картина формирования краевой волны сложнее, и $L_{\kappa p}$ – это усредненное расстояние до края образца.

$$\langle A \rangle \vec{\alpha} = \vec{b}$$
 (4.15)

и приводится к системе из N_{max} +1 уравнений с квадратной матрицей путем умножения обеих частей равенства на эрмитово сопряженную (т.е. транспонированную с комплексным сопряжением) матрицу $\langle A \rangle^*$. В итоге получается

$$^{*}\vec{\alpha}=^{*}\vec{b}$$
 или $\vec{\alpha}=\vec{p}$ (4.16)

где квадратная матрица $\langle L \rangle$ образована коэффициентами $l_{ij} = \sum_{k=1}^{K_{max}} a_{kj} a_{ki}^{*}$, а компонентами вектора \vec{p} служат коэффициенты $p_i = \sum_{k=1}^{K_{max}} b_k a_{ki}^{*}$ (*i*, *j* = 1.. Nmax+1). Известно [55], что решение системы уравнений (4.16) обеспечивает наилучшую среднеквадратичную аппроксимацию правых частей исходной системы (4.15).

Если модель многократных отражений соответствует реальной физике возбуждения полуоткрытого резонатора, образованного параболическим зеркалом и плоским образцом, то в спектре коэффициентов { α_n }, вычисленных по исходным экспериментальным данным $S_{11}(f_k)$ и $S_{pyn}(f_k)$, значение коэффициента α_3 должно превалировать над значениями других коэффициентов. Кроме того, можно ожидать, что коэффициент α_6 , соответствующий следующей сходящейся к облучателю сферической волне, будет заметно выше соседних коэффициентов⁸.

Поскольку едва ли возможно точно оценить долю мощности, излучаемой в свободное пространство, то восстановление КО испытуемого образца должно базироваться на сопоставлении измеренной частотной зависимости $S_{11}(f_k)$ с частотными зависимостями образцов, КО которых известно с достаточной точностью. Естественно, самым "важным" из этих калибровочных образцов является образец, значение КО которого равно 1. <u>Во-первых</u>, подлежащие измерению образцы являются хорошо отражающими, поэтому и сравнивать следует с зависимостями, соответствующими подобным образцам. <u>Во-вторых</u>,

⁸ Приведенные ниже результаты моделирования убедительно подтверждают состоятельность используемого подхода, приводящего к соотношению (4.14).

такой калибровочный образец прост в изготовлении: это может быть пластина правильной формы с гладкой поверхностью из хорошо проводящего металла. Как показывают числовые эксперименты, методическая погрешность восстановления КО при калибровке измерительной установки по единственному идеально отражающему образцу составляет величину чуть меньше 2%. Для повышения точности следует использовать дополнительно 2 или 3 калибровочных образца с разными КО.

Идея предлагаемого алгоритма обработки результатов измерений состоит в следующем. Коэффициенты $\alpha_n[m]$, отражающие интенсивность волны, возвращающейся в рупор после *n*-кратного отражения, зависят от КО породившего их образца, т.е. являются некоторой функцией w_n значения Γ модуля КО образца: $\alpha_n = w_n(\Gamma)$. Если функции $w_n(\Gamma)$ известны, то по измеренной частотной зависимости $S_{11}(f_k)$ испытуемого образца можно вычислить значения аппроксимирующих коэффициентов { α_n } и затем определить $\Gamma_{oбp} = w_n^{-1}(\alpha_n)$.

Пусть $\{S_m(f_k)\}$ – эталонные зависимости для М калибровочных образцов (m = 1..M) с известными значениями Γ_m коэффициентов отражения (например, $\Gamma_1 = 1$, $\Gamma_2 = 0.95$, $\Gamma_3 = 0.9$, $\Gamma_4 = 0.85$). Для каждой зависимости $\{S_m(f_k)\}$ по описанной выше методике (решая систему уравнений (4.15)) вычисляются аппроксимирующие коэффициенты $\{\alpha_n(\Gamma_m)\}$, являющиеся отсчетами интересующих нас функций $w_n(\Gamma)$ в M точках Γ_m . Из физических соображений ясно, и расчеты подтверждают это, что третий и шестой коэффициенты являются наиболее интенсивными, и, следовательно, менее зашумленными. Поэтому целесообразно именно по этим коэффициентам вычислять КО образца. Рисунок 4.7 поясняет суть дела.

Рисунок 4.7 - К определению КО образца

Искомая функция $w_n(\Gamma)$ представляется полиномом степени *M*-1 $w_n(\Gamma) = \sum_{k=0}^{M-1} a_{nk} \Gamma^k$. Так как для *M* калибровочных образцов с известными значениями Γ_m коэффициентов отражения имеются значения коэффициентов { α_n }, то тем самым определена система *M* уравнений относительно *M* неизвестных коэффициентов полиномиальной аппроксимации функции $w_n(\Gamma)$

$$\sum_{k=0}^{M-1} a_{nk} \Gamma_n^k = \alpha_n \tag{4.17}$$

Решение системы (4.17) для n = 3 и n = 6 задает функции $w_3(\Gamma)$ и $w_6(\Gamma)$, представленные на рисунке 4.7 жирными кривыми. КО испытуемого образца может вычисляться по соответствующему ему значению α_3 (показано стрелками на рисунке 4.7), по значению α_6 или в результате совместной обработки по обоим значениям α_3 и α_6 . Общая тенденция хода кривых $w_3(\Gamma)$ и $w_6(\Gamma)$ состоит в том, что они возрастают по мере увеличения КО. Более того, на основании физических представлений можно ожидать, что функции $w_3(\Gamma)$ и $w_6(\Gamma)$, близки к степенным зависимостям ($\alpha_{3max} \approx \Gamma^3$) и ($\alpha_{6max} \approx \Gamma^6$) соответственно, и результаты численного моделирования это подтверждают. Использование данных от калибровочных образцов позволяет уточнить эти функции и, как следствие, устранить методическую погрешность вычисления КО измеряемого образца.

Наконец, заметим, что, располагая программой достаточно точного электродинамического моделирования зеркала с отражателем в раскрыве (уровня *CST Microwave Studio* и выше), можно вместо калибровочных образцов использовать расчетные зависимости электродинамического моделирования измерительной установки: облучатель-зеркало и «эталон»-образец с соответствующей проводимостью g_{3m} . При этом если толщина калибровочного образца значительно превышает толщину скин-слоя ([46], стр. 224), то его КО находится по известной формуле $\Gamma_{3m} = \left|1 - \sqrt{\varepsilon' - jg_{3m}/(\omega \varepsilon_0)}\right| / \left|1 + \sqrt{\varepsilon' - jg_{3m}/(\omega \varepsilon_0)}\right|$. В противном случае, необходимо учитывать конечную толщину пластины калибровочного образца.

КО можно записать через обратные функции: $\Gamma_{oбp} = w_3^{-1}(\alpha_{3oбp})$ или $\Gamma_{oбp} = w_6^{-1}(\alpha_{6oбp})$, но в вычислительном отношении удобнее воспользоваться универсальными процедурами поиска корней уравнений

$$w_n(\Gamma_{\text{obp}}) - \alpha_{nobp} = 0 \tag{4.18}$$

тем более, что в рассматриваемом случае аналитически определены производные фигурирующих в уравнениях функций $w'_{n}(\Gamma) = \sum_{k=1}^{M-1} ka_{k}\Gamma^{k-1}$.

В разработанной программе для обработки экспериментальных данных (результатов измерения $S_{11}(f_k)$) реализован следующий итерационный алгоритм решения уравнения (4.18). Нулевое приближение находится при линейной аппроксимации

$$\Gamma_{o\delta p}^{(0)} = \Gamma_1 + (\Gamma_{\max} - \Gamma_{\min})(\alpha_{\max} - \alpha_{\min}) / (\alpha_{o\delta p} - \alpha_{\min}).$$

На *i*-том шаге предыдущее значение $\Gamma_{oбp}^{(i-1)}$ уточняется с использованием значения производной $w_n'(\Gamma_{oбp}^{(i-1)})$:

$$\Gamma_{o\delta p}^{(i)} = \Gamma_{o\delta p}^{(i-1)} + (w_n(\Gamma_{o\delta p}^{(i-1)}) - \alpha_{no\delta p}) / w'_n(\Gamma_{o\delta p}^{(i-1)}).$$

Описание разработанных программ, составляющих основу программнометодического обеспечения стенда измерения КО, представлено в главе 5 диссертации

4.5 Имитационное моделирование измерительного стенда

Для отладки программы, исследования предложенного метода и «метрологии» установки (в виртуальном режиме) осуществлялось электродинамическое моделирование установки (рисунок 4.3) в пакете *CST*

CST Microwave Studio. Для проверки возможностей программы по моделированию полуоткрытого резонатора, образованного параболическим зеркалом и плоским металлическим отражателем был выполнен поверочный В установке (рисунок 4.8а) использовалось эксперимент. имевшееся в лаборатории параболическое зеркало навигационной РЛС Ø = 746мм с фокусным 270мм. На расстоянии 135мм от вершины зеркала расстоянием $L_{\text{фок}}$ = дюралевый перпендикулярно его оси закреплялся диск Ø = 520мм. Ha рисунке 4.86 представлен измеренный КСВН в диапазоне от 9,5 до 10,25 ГГц. На рисунке 4.86 приведены результаты моделирования этой установки в CST. При моделировании параболоид и диск считались идеально проводящими, поскольку КО дюрали на этих частотах близок к единице. Наблюдается хорошее совпадение экспериментально снятой и расчетной кривых как по характеру частотной И по уровню амплитудных значений. Имитационное зависимости, так моделирование осуществлялось в диапазоне от 9 до 11 ГГц.

а) лабораторная установка

б) КСВН в диапазоне 9,5ГГц – 10,25ГГц

S-Parameter Magnitude

Рисунок 4.8 – Проверочный эксперимент

Программа *CST MWS* формирует текстовые файлы (см. таблицу 4.1), имеющие расширение *.sig*, результатов вычисления частотных зависимостей комплексного коэффициента отражения $S_{11}(f)$. Эти файлы сохраняются под именами, начинающимися с ключевых символов "*a*1" и "*p*1" соответственно для амплитуды и фазы (phase). Несколько начальных строк этих файлов начинаются с буквенных символов, что служит признаком комментария. Затем следуют строки

числовых записей, разделенных пробелом и образующих две колонки: первая – частота в гигагерцах, вторая – амплитуда в децибелах или фаза в градусах.

Таблица 4.1 - Содержание файлов, формируемых CST MWS

a1(1)1(1).sig	p1(1)1(1).sig
File type MWS Signal file Version	File type MWS Signal file Version
Length: 000000001001	Length: 000000001001
Type: Frequency	Type: Frequency
Scale: 1.000000e+009	Scale: 1.000000e+009
8.999999e+000 3.065173e-001	8.999999e+000 1.805662e+002
9.001999e+000 3.082390e-001	9.001999e+000 1.783846e+002
9.003999e+000 3.092616e-001	9.003999e+000 1.761887e+002
9.005999e+000 3.095917e-001	9.005999e+000 1.739943e+002
	4

Программа "PMO_KO_1" преобразует файлы к формату *Touchstone*, в котором прибор ZVA-40 записывает результаты измерений комплексных коэффициентов матрицы рассеяния испытуемого CBЧ устройства⁹. А именно, за строками комментариев следуют строки числовых данных, образующих три колонки: первая – значения частот в гигагерцах, вторая и третья – соответственно реальная и мнимая части $S_{11}(f)$. Программа создает папку «ОБРАЗЦЫ» и в ней файлы с именами: **S11_rupor** для частотной характеристики рупора, **S11_0**, **S11_1** и т.д. для частотных характеристик калибровочных образцов. В режиме измерений происходит аналогичное преобразование файлов, относящихся к результатам моделирования или измерения $S_{11}(f)$ испытуемого образца.

Аппроксимация зависимостей $S_{11}(f)$ рядом (4.14) иллюстрируется на рисунке 4.9. При моделировании проводимость образца задавалась такой, чтобы КО соответствовали значениям 0.95, 0.90, 0.85. Жирной линией изображены "измеренные" $|S_{11}(f)|$, а серией тонких линий – результаты аппроксимации для различных чисел *N* членов разложения (4.14): 3, 6, 9, 15 и 48, т.е. для числа *N* коэффициентов α_n .

⁹ При работе программы в реальных условиях, когда считываются данные прибора ZVA-40, отпадает необходимость в таком преобразовании, и файлы просто заносятся в указанную папку под ключевыми именами для сохранения и использования в режиме измерений.

Ввиду иллюстративного назначения рисунка 4.9 и плотного расположения кривых аппроксимации, они не снабжены метками. Ясно, что с ростом числа N членов разложения точность аппроксимации монотонно повышается, кривые приближаются к аппроксимируемой зависимости $|S_{11}(f)|$. Поэтому не трудно разобраться в том, какому числу N соответствует та или иная кривая.

В таблицах 4.2 — 4.4 приведены значения девяти коэффициентов α_n при изменении числа N_{max} членов разложения (4.14) в пределах от 3 до 9, а также для двух больших значений $N_{max} = 21$ и $N_{max} = 39$. Полупрозрачными розовыми маркерами выделены колонки для коэффициентов α_n с скатным трем значением индекса *n*.

											_
	КО	$ \alpha_1 $	$ \alpha_2 $	$ \alpha_3 $	$ \alpha_4 $	$ \alpha_5 $	$ \alpha_6 $	$ \alpha_7 $	$ \alpha_8 $	$ \alpha_9 $	
	1	0.060	0.049	0.303							
3	0.95	0.058	0.043	0.278							
x	0.9	0.055	0.037	0.225							
N_{ma}	0.85	0.051	0.030	0.174							
	1	0.056	0.051	0.300	0.047	0.026	0.155				
9	0.95	0.055	0.046	0.276	0.043	0.021	0.123				
וו ג	0.9	0.053	0.039	0.225	0.035	0.013	0.081				
N_{ma}	0.85	0.050	0.032	0.174	0.028	0.007	0.049				
	1	0.056	0.051	0.301	0.045	0.028	0.154	0.029	0.029	0.071	
6	0.95	0.055	0.046	0.277	0.041	0.023	0.123	0.024	0.023	0.049	
 ×	0.9	0.053	0.039	0.225	0.034	0.014	0.082	0.017	0.013	0.026	
V _{ma.}	0.85	0.050	0.032	0.175	0.027	0.007	0.050	0.011	0.007	0.010	

Таблица 4.2 - Модули коэффициентов {α_n}

Таблица 4.3 - Коэффициенты аппроксимации при N_{max} =21

	α ₁	α2	α3	a ₄	α5	α ₆	α7	α8	αg	
медь	0.0557	0.0515	0.3009	0.0446	0.0278	0.1542	0.0277	0.0295	0.0717	
g=426 См/м	0.0552	0.0462	0.2775	0.0413	0.0227	0.1235	0.0239	0.0238	0.0494	
g=112 См/м	0.0530	0.0392	0.2254	0.0341	0.0139	0.0819	0.0167	0.0140	0.0263	
g=44.7 См/м	0.0497	0.0325	0.1747	0.0274	0.0071	0.0497	0.0112	0.0071	0.0110	

	α1	α2	α3	α4	α5	α ₆	a ₇	α8	αg	
медь	0.0557	0.0516	0.3011	0.0445	0.0280	0.1543	0.0276	0.0297	0.0718	
g=426 См/м	0.0553	0.0463	0.2776	0.0414	0.0228	0.1235	0.0239	0.0239	0.0494	
g=112 См/м	0.0531	0.0392	0.2254	0.0341	0.0138	0.0819	0.0167	0.0140	0.0263	
g=44.7 См/м	0.0497	0.0325	0.1747	0.0274	0.0071	0.0497	0.0113	0.0072	0.0111	

Таблица 4.4 - Коэффициенты аппроксимации при *N_{max}* =39

Если описание (4.14), полученное в рамках геометрической оптики, корректно описывает «измеренные» зависимости $S_{11}(f)$, то:

1) помеченные маркером коэффициенты, соответствующие сходящимся волнам, должны заметно превышать значения соседних коэффициентов;

2) $|\alpha_n|$ должны уменьшаться как с ростом *n*, так и по мере уменьшения коэффициента отражения Γ (строки таблиц сверху-вниз);

3) отношения α_3/α_6 и α_6/α_9 должны возрастать ¹⁰ по мере уменьшения коэффициента отражения Γ (строки таблиц сверху-вниз).

Все эти закономерности отчетливо проявляются в результатах моделирования, что подтверждает справедливость допущений геометрической оптики применительно к полуоткрытому резонатору указанных волновых размеров.

4.6 Устойчивость задачи восстановления КО образца по частотной характеристике $S_{11}(f)$

4.6.1 Постановка задачи

Стабильность значений α_n при изменении числа N_{max} в значительных пределах свидетельствует об устойчивости системы уравнений (4.16), к решению которой приводит поиск коэффициентов разложения (4.14). Ясно, что это привлекательное качество в первую очередь зависит от сочетания волновой длины фокусного расстоянием $L_{\phi o \kappa}$ и полосы частот Δf , в которой осуществляются измерения и обработка результатов для извлечения информации о КО образца (рабочий диапазон частот).

¹⁰ По идее, пропорционально 1/*R*³

Итак, в рамках геометрической оптики отраженная волна $S_{11}(f)$ является итогом интерференции многократно отраженных волн и первичного отражения от конца волновода

$$\sum_{n=1}^{N_{\text{max}}} \alpha_n e^{-j2\pi f n L_{\phi o \kappa}/c} = S_{11}(f), \qquad (4.19)$$

где $S_{11}(f) = (S_{odp}(f) - S_{pyn}(f))e^{j(2\pi f L_{\kappa}/c + \beta(f)L_{\theta})}$ – это пересчитанные к срезу волновода дополнительные отражения в волноводе;

 $S_{pyn}(f)$ и $S_{o\delta p}(f)$ – измеренные на выходе КВП коэффициенты отражения соответственно безо всякого образца (первичные отражения рупора или открытого конца волновода) и в присутствии образца;

*L*_к и *L*_в – длины коаксиальной части КВП и волноводной, образованной собственно волноводом и волноводным участком КВП;

 $\beta(f) = \sqrt{1 - (2af / c)^2}$ – фазовая постоянная волны H_{10} волновода.

Уравнение (4.19) является обобщенным полиномом, искомые коэффициенты { α_n } которого находятся из условия аппроксимации функции $S_{11}(f)$ линейной комбинацией базисных функций $e_n(f) = e^{-jnf(2\pi L_{\phiox}/c)}$. Если интересоваться наилучшим среднеквадратичным приближением, то задача решается классическим методом Галеркина-Ритца [58-60]. Выбирая, как это часто делают, в качестве весовых функций $w_m(f)$ сами базисные функции $w_m(f) = e^{-jmf(2\pi L_{\phiox}/c)}$, приходим¹¹ к системе линейных алгебраических уравнений (СЛАУ) порядка N_{max}

$$\sum_{n=1}^{N_{\text{max}}} \alpha_n A_{mn} = b_m, \qquad (4.20)$$

где

$$A_{mn} = \int_{f_0 - \Delta f}^{f_0 + \Delta f} e_n(f) w_m^*(f) df = \frac{\sin[(n-m)2\pi L_{\phi o \kappa} \Delta f / c]}{(n-m)2\pi L_{\phi o \kappa} \Delta f / c} \Delta f e^{-j(n-m)f_0(2\pi L_{\phi o \kappa} / c)}$$

¹¹ Умножая обе части равенства на комплексно сопряженные функции $w_m^*(f)$ ($m = 1, ..., N_{\text{max}}$) и интегрируя в пределах $f_0 - \Delta f/2 < f < f_0 + \Delta f/2$.

$$b_m = \int_{f_0 - \Delta f}^{f_0 + \Delta f} S_{11}(f) w_m^*(f) df$$

Обозначим через **a** вектор-столбец $[\alpha_n \Delta f e^{-jnf_0(2\pi L_{\phiok}/c)}]^T$, через **b** – векторстолбец $[b_m]^T$, через $\langle \mathbf{A} \rangle$ – квадратную матрицу коэффициентов $\left[\frac{\sin[(n-m)2\pi L_{\phiok}\Delta f/c]}{(n-m)2\pi L_{\phiok}\Delta f/c}\right]$. Тогда СЛАУ (4.20) записывается в компактной

матричной форме

$$\langle \mathbf{A} \rangle \mathbf{\alpha} = \mathbf{b}$$
 (4.21)

и ее решение записывается через обратную матрицу

$$\boldsymbol{\alpha} = \langle \mathbf{A} \rangle^{-1} \mathbf{b} \tag{4.22}$$

4.6.2 Критерии устойчивости решения

Устойчивость решения (4.22) определяется свойствами матрицы <А>. Для аналитической оценки этой устойчивости можно воспользоваться спектральной Известно [61, 64], что собственные векторы теорией матриц. $\{\boldsymbol{g}_n\}$ самосопряженной матрицы¹² образуют ортогональный базис области определения матрицы, а ее собственные числа $\{\lambda_n\}$ положительны. Собственные вектора и числа образуют спектр матрицы. Пусть нумерация соответствует нисходящей последовательности собственных чисел: $\lambda_1 = \lambda_{max}$ и $\lambda_{Nmax} = \lambda_{min}$. Будем считать векторы {g_n} нормированными, что не ограничивает общности рассуждений, а в то же время последующие записи делает более компактными. Поскольку векторы $\{g_n\}$ по определению удовлетворяют условию <A> $g_n = \lambda_n g_n$, то, представляя вектора **a** и **b** разложениями $\mathbf{a} = \sum_{n=1}^{N_{\text{max}}} \alpha_n \mathbf{g}_n$ и $\mathbf{b} = \sum_{n=1}^{N_{\text{max}}} b_n \mathbf{g}_n$, легко видеть, что равенства (4.21) и (4.22) преобразуются к следующему виду

$$\mathbf{b} = \langle \mathbf{A} \rangle \boldsymbol{\alpha} = \sum_{n=1}^{N_{\text{max}}} \alpha_n \lambda_n \mathbf{g}_n,$$

$$\boldsymbol{\alpha} = \langle \mathbf{A} \rangle^{-1} \mathbf{b} = \sum_{n=1}^{N_{\text{max}}} \frac{b_n}{\lambda_n} \mathbf{g}_n$$

(4.23)

¹² Матрица, симметричные коэффициенты которой комплексно сопряжены: $a_{nm} = a^*_{nm}$.

Из последнего равенства следует, что векторы $\{g_n\}$ остаются собственными и для обратной матрицы $\langle A \rangle^{-1}$, а ее собственные числа имеют обратные значения $\{1/\lambda_n\}$.

При изменении правой части уравнения (4.21) изменяется и его решение (4.22). Обозначим соответствующие этим изменениям вектора через ба и бb. Очевидно, что $\delta a = \langle \mathbf{A} \rangle^{-1} \delta \mathbf{b} = \sum_{n=1}^{N_{max}} \frac{\delta b_n}{\lambda_n} \mathbf{g}_n$. Естественной мерой неустойчивости решения служит отношение норм $\xi = ||\delta a|| / ||\delta b||$. Очевидно, что значение ξ в зависимости от конкретной реализации вектора отклонения $\delta \mathbf{b}$ изменяется в диапазоне $1/\lambda_{max} \leq \xi \leq 1/\lambda_{min}$, пределы которого достигаются при $\delta \mathbf{b} = \mathbf{g}_1$ и $\delta \mathbf{b} = \mathbf{g}_{Nmax}$ соответственно.

В рамках минимаксного подхода неустойчивость решения СЛАУ принято характеризовать значением $\xi_{\text{max}} = 1/\lambda_{\text{min}}$, называемым обусловленностью матрицы $\langle \mathbf{A} \rangle^{-1}$. Если иметь в виду прикладные интересы и учитывать, что отклонения $\delta \mathbf{b}$ на практике чаще всего случайны, например, обусловлены конечной точностью измерений, то представляется оправданным неустойчивость решения (4.22) характеризовать отношением соответствующих математических ожиданий. Принимая типичную статистическую модель ошибок $\delta \mathbf{b}$, коэффициенты δb_n которых – статистически независимые центрированные случайные величины с одинаковыми дисперсиями $\epsilon^2/N_{\text{max}}$, получаем

$$\overline{\left\|\delta\boldsymbol{\alpha}\right\|^{2}} = \sum_{n=1}^{N_{\text{max}}} \frac{\left|\delta\boldsymbol{b}_{n}\right|^{2}}{\lambda_{n}^{2}} = \frac{\varepsilon^{2}}{N_{\text{max}}} \sum_{n=1}^{N_{\text{max}}} \frac{1}{\lambda_{n}^{2}}$$
(4.24)

или, учитывая, что $\overline{\left\| \delta \mathbf{b} \right\|^2} = \varepsilon^2$, получаем

$$\xi_{cp} = \sqrt{\left\|\delta \boldsymbol{\alpha}\right\|^2 / \left\|\delta \mathbf{b}\right\|^2} = \sqrt{\sum_{n=1}^{N_{\text{max}}} \lambda_n^{-2} / N_{\text{max}}}$$
(4.25)

В формуле (4.25) под корнем квадратным стоит среднее значение квадратов собственных чисел матрицы $<A>^{-1}$. К сожалению, нахождение всех собственных чисел матрицы – это сложная вычислительная проблема. С другой стороны, элементарно найти среднее значение собственных чисел матрицы, поскольку сумма диагональных элементов матрицы (так называемый след матрицы)

совпадает с суммой ее собственных чисел [65, 66]. Таким образом, $\sum_{n=1}^{N_{\text{max}}} \lambda_n^{-1} / N_{\text{max}} = \sum_{n=1}^{N_{\text{max}}} d_{nn} / N_{\text{max}}$, где d_{nn} – диагональные элементы матрицы $<\mathbf{A}>^{-1}$. Можно ожидать, что корень квадратный из среднего квадрата чисел $\{1/\lambda_n^2\}$ не сильно отличается от среднего значения самих чисел $\{1/\lambda_n\}$. Если это так, то трудно вычисляемое по строгой формуле (4.25) значение ξ_{cp} можно заменить на

$$\xi_{cp} \approx \sum_{n=1}^{N_{\text{max}}} d_{nn} / N_{\text{max}}$$
(4.26)

Для выяснения допустимости такого приближения проведем следующие вычисления. Т.к. важны не абсолютные, а относительные значения собственных чисел, то примем λ₁ = λ_{max} = 1. Значение минимального собственного числа обозначим как а (λ_{min} = a), и будем варьировать в диапазоне от 0,05 до 0,85. Результаты вычислений, выполненных в *Mathcad*, представлены на рисунке 4.10. Сплошная линия соответствует точной формуле (4.25), а пунктирная – формуле (4.26). Собственные числа {λ_n} считались линейно спадающими на интервале от единицы до a, a их число принималось равным N_{max} =3 (рисунок 4.10a), N_{max} =5 (рисунок 4.106), N_{max} =10 (рисунок 4.10в). Наконец, на рисунке 4.10г

представлен предельный случай, когда собственных чисел настолько много, что суммы в (4.25) и (4.26) могут быть заменены интегралами:

$$\sum_{n=1}^{N_{\text{max}}} \lambda_n^{-2} \approx \frac{1}{1-a} \int_a^1 \lambda^{-2} d\lambda = \frac{1}{a} ,$$
$$\sum_{n=1}^{N_{\text{max}}} \lambda_n^{-1} \approx \frac{1}{1-a} \int_a^1 \lambda^{-1} d\lambda = \frac{\ln(a)}{a-1}$$

Рисунок 4.10 - Два варианта расчета коэффициента ξ

Близость сплошных и пунктирных кривых на графиках рисунка 4.10 свидетельствует о допустимости использования формулы (4.26), тем более что параметр ξ играет оценочную роль как характеристика устойчивости решения СЛАУ.

4.6.3 Диапазон частот Δf , фокусное расстояние $L_{\phi o \kappa}$ и точность восстановления КО

Параметр ξ_{cp} по смыслу равенства (4.25) является коэффициентом пропорциональности между значениями погрешности измерений, которые приводят к случайным отклонениям бb правой части уравнения (4.20), и погрешностью ба вычисления коэффициентов разложения (4.22), т.е., в конечном счете, точностью восстановления КО. Поэтому представляет интерес

99

исследование зависимости параметра ξ_{cp} от таких характеристик измерительной установки, как фокусное расстояние $L_{\phi o \kappa}$ и частотный диапазон измерений $f_{max} - f_{min} = 2 \Delta f$, поскольку именно эти параметры определяют структуру матрицы $\langle A \rangle$ и, следовательно, структуру матрицы $\langle A \rangle^{-1}$. Конкретно, из комментариев к выражению (4.20) следует, что эти параметры входят в комбинации $L_{\phi o \kappa} \Delta f /c$, которую можно трактовать как безразмерное отношение $L_{\phi o \kappa} /\Lambda$, где $\Lambda = c/\Delta f - длина$ волны, соответствующая «девиации» частоты измерений.

Для проведения этих исследований была разработана программа «*Ksilnvestigation*», базовым элементом которой служит процедура обращения матрицы. В ней реализован метод обращения Гаусса [66]: сначала исходная матрица $\langle A \rangle$ преобразуется к треугольной матрице (прямой ход), а затем – к единичной (обратный ход). Одновременно единичная матрица $\langle E \rangle$ подвергается тем же преобразованиям, в результате чего формируется обратная матрица $\langle A \rangle^{-1}$. Сумма диагональных элементов этой матрицы дает статистическую оценку (4.26) устойчивости решения СЛАУ (4.23).

 $< A >^{-1}$ Вычисление максимального собственного числа матрицы осуществляется, как обычно [67]: произвольно заданный вектор-столбец **a**₀ многократно умножается слева на матрицу $<A>^{-1}$. На каждой итерации относительный вес составляющей g₁ возрастает, благодаря умножению на максимальное собственное число. В пределе на итерации с большим номером К вектор $\mathbf{a}_{K} = (\langle \mathbf{A} \rangle^{-1})^{K} \mathbf{a}_{0}$ с точностью до постоянного множителя повторяет предыдущий вектор $\mathbf{a}_{K} \approx (\lambda_{\max})^{K} \mathbf{g}_{1} = \lambda_{\max} \mathbf{a}_{K-1}$. Это обстоятельство можно использовать в качестве критерия прекращения итераций по условию $|(\mathbf{a}_{K}, \mathbf{a}_{K-1})| / (||\mathbf{a}_{K}|| ||\mathbf{a}_{K-1}||) \approx 1$, т.к., будучи косинусом угла между векторами, левая часть равна единице только для «сонаправленных» векторов. При этом очевидно $\lambda_{\max} \approx ||\mathbf{a}_K|| / ||\mathbf{a}_{K-1}||.$

На рисунке 4.11 представлены результаты расчетов, которые свидетельствуют о том, что устойчивость решения СЛАУ (4.20) обеспечивается при условии $L_{\phi o \kappa} > (0.43 \div 0.5)$ с $/\Delta f \approx c/(f_{max} - f_{min})$. Таким образом, чем у́же

частотный диапазон измерений, тем больше должно быть фокусное расстояние параболоида.

Рисунок 4.11 - Зависимости ξ_{max} и ξ_{cp} пяти значений $L/\Lambda = \Delta f L_{\phi o \kappa}/c$

На рисунке 4.12 в явном виде представлены зависимости коэффициента устойчивости решения СЛАУ от параметров установки $\Delta f L_{\phi o \kappa}/c$ для четырех значений N_{max} : 6, 9, 15, 30. Интересно отметить существование порогового значения $\Delta f L_{\phi o \kappa}/c = 0.5$, соответствующего граничным частотам диапазона измерений ($f_{max} - f_{min}$) = $c / L_{\phi o \kappa}$. Понятно, что при этом внедиагональные элементы матрицы $\langle \mathbf{A} \rangle$ равны нолю и она превращается в единичную «предельно устойчивую ($\xi_{cp} = 1$)» матрицу. Ясно также, что при сужении частотного диапазона базовые функции $e_n(f) = e^{-jnf(2\pi L_{\phi o \kappa}/c)}$ все в меньшей степени отличаются друг от друга и максимальное собственное число обратной матрицы возрастает. Не тривиальным и интересным результатом, который подтверждается выполненными расчетами, является стабильность коэффициента устойчивости $\xi_{cp} \approx 1$ при $\Delta f L_{\phi o \kappa}/c > 0.5$.

Рисунок 4.12 - Коэффициент устойчивости решения СЛАУ

Легко убедиться, что параметры установки с $L_{\phi o \kappa} = 70$ мм при измерении в диапазоне от $f_{min} = 20$ ГГц до $f_{max} = 30$ ГГц, соответствуют значению $\Delta f L_{\phi o \kappa}/c = 1.167$, что обеспечивает устойчивость решения СЛАУ (4.20), проявляющуюся, в частности, в стабильности коэффициентов α_n (таблицы 4.2 – 4.4).

4.7 Оценка методической погрешности, связанной с аппроксимацией зависимости α₃(*Γ*)

Рассматриваемый способ измерения КО основан на том, что по измеренной частотной зависимости $S_{11}(f)$ вычисляется коэффициент α_3 интенсивности сходящейся сферической волны, формирующейся после трехкратного отражения от образца. При выполнении условия $\Delta f L_{\phi o \kappa}/c > 0.5$, обеспечивающем устойчивость соответствующей системы уравнений (4.16), этот коэффициент, как показано в разделе 4.1 (таблица 4.2), восстанавливается с точностью 10^{-3} при числе членов разложения $N_{max} > 3$.

Другим фактором методической погрешности измерений является конечная точность аппроксимации зависимости $\alpha_3(\Gamma)$ на этапе калибровки. Очевидно, что увеличивая число М калибровочных образцов и связанных с этим реперных точек $\alpha_3(\Gamma_m)$ (m = 1..М) этой зависимости и соответственно увеличивая степень аппроксимирующего полинома (4.17), можно достичь теоретически сколь угодно

102

высокой точности. Однако на практике чрезвычайно важно использовать предельно малое число калибровочных образцов. В интересах оценки методической погрешности из-за ограниченного числа реперных точек был выполнен следующий численный эксперимент.

В среде *CST* моделировался полуоткрытый резонатор, образованный параболоидом диаметра $D_{3p\kappa} = 150$ мм с фокусным расстоянием $L_{\phi o \kappa} = 75$ мм и образцом $D_{o \delta p} = 160$ мм. Диапазон «измерений» составлял $18 \div 26$ ГГц. Калибровочными считались три образца, проводимости которых $56*10^6$ См/м, 1000 См/м, 93 См/м выбирались из тех соображений, чтобы номинальные значения их КО на частоте f = 22 ГГц (понимаемые как КО от плоской границы среды с заданными проводимостями (формула (1.1)), соответствовали значениям 1, 0.95 и 0.85 соответственно. На рисунке 4.13 показаны частотные зависимости $|\Gamma(f)|$ этих «эталонов» (жирные кривые).

В качестве трех «измеряемых образцов» были выбраны диски с проводимостями 3800 См/м, 220 См/м и 158 См/м, частотные зависимости КО которых представлены на рисунке 4.13 тонкими линиями.

Рисунок 4.13 - Частотные зависимости коэффициента отражения

На рисунке 4.14 представлены результаты моделирования в *CST* частотных зависимостей $|S_{11}(f)|$ на входе полуоткрытого резонатора, по которым на этапе калибровки полиномом второй степени аппроксимировалась зависимость $\alpha_3(\Gamma)$. Здесь же приведены точные значения Γ для трех частот: 20 ГГц, 22 ГГц, 24 ГГц.

Рисунок 4.14 - Исходные данные для калибровки установки

Затем «измерялись» частотные зависимости $S_{11}(f)$, для образцов с проводимостями 3800 См/м, 220 См/м, 158 См/м, имеющих значения КО на интервалах между калибровочными значениями. Под графиками (рисунок 4.15) приведены расчетные (точные) значения Γ их КО для трех частот: 20 ГГц, 22 ГГц, 24 ГГц.

104

Рисунок 4.15 - Исходные данные «измеряемых» образцов

На рисунке 4.16 представлены скриншоты результатов обработки данных, выполняемых разработанной программой *РМО_КО_3*. На экран выводятся графики амплитудных и фазовых зависимостей $S_{11}(f)$, результат вычисления «КО = …». Верхней строчкой выводится имя файла, в котором записаны подлежащие обработке «измеренные» данные $S_{11}(f)$ образца. Видно, что в имени файла содержится полная информация об образце.

Рисунок 4.16 - Результаты «измерений» на средней частоте $f = 22 \Gamma \Gamma \mu$

Рисунок 4.16г соответствует случаю, когда измеряется КО одного из калибровочных образцов. Специфичность ситуации подчеркнута «задымлением» рисунка. Естественно, что результат измерений должен совпасть со значением КО калибровочного образца. Точность совпадения ограниченна лишь установленной в программе точностью $\delta = 10^{-4}$ вычисления корня соответствующего полинома.

Т.к. коэффициент α_3 вычисляется в результате обработки частотных характеристик $S_{11}(f)$ в полосе частот, то на первый взгляд кажется, что результат обработки измеренных данных по рассматриваемому алгоритму дает среднее (в полосе частот) значение КО. Причем частотная зависимость КО (рисунок 4.13) обостряется с уменьшением значения КО и достигает порядка 2% для образца g = 93 См/м.

Если для используемых калибровочных образцов известны не только значения КО на средней частоте диапазона измерений, но и их частотные зависимости, то, используя на этапе калибровки значения КО на определенной частоте, получим зависимость $\alpha_3(\Gamma)$ реперные точки которых точно отражают взаимосвязь α_3 и Γ на конкретной частоте. На рисунках 4.17 и 4.18 представлены результаты моделирования процесса измерений на частотах 20 ГГц и 24 ГГц с использованием при калибровке соответствующих значений (жирные точки на рисунке 4.13)

Рисунок 4.17 - Результаты «измерений» на средней частоте $f = 20 \Gamma \Gamma \mu$

Рисунок 4.18 - Результаты «измерений» на средней частоте $f = 24 \ \Gamma \Gamma \mu$

В таблице 4.5 для удобства сравнения сведены точные и «измеренные» значения КО, а также погрешности измерений є. Точные значения и отклонения є выделены жирным шрифтом.

		Калибр	овочные об	бразцы	Измеряемые образцы				
		g =	g =	g =	g =	g =	g =		
		56 10⁶ См/м	10³ См/м	93 См/м	3800 См/м	220 См/м	158 См/м		
					0.976106	0.904305	0.888045		
	20 ГГц	0.999801	0.953945	0.856513	0.977230	0.900192	0.884090		
Ŀ					$\epsilon = 0.0011$	ε = - 0.0041	ε = - 0.0040		
Ы, Ј					0.974955	0.899869	0.882900		
TOT	22 ГГц	0.999791	0.951751	0.850035	0.976137	0.895909	0.878857		
Hac					$\epsilon = 0.0012$	ε = - 0.0040	$\epsilon = -0.0040$		
–					0.973856	0.895648	0.878011		
	24 ГГц	0.999782	0.949660	0.843888	0.974848	0.891625	0.873874		
					$\epsilon = 0.0010$	ε = - 0.0040	ε = - 0.0041		

Таблица 4.5 - Результаты измерений

Таким образом, составляющая методической погрешности измерений, связанные с аппроксимацией зависимости $\alpha_3(\Gamma)$ при использовании трех калибровочных образцов, не выходят за пределы ±0,4%.

4.8 Выводы к главе 4

4.8.1 При размерах установки порядка десяти длин волн полуоткрытый резонатор «зеркало-образец» хорошо описывается в рамках геометрической оптики, о чем свидетельствует доминирование коэффициентов α_n с кратными трем значениями индекса (выделенные жирным шрифтом столбцы таблиц 4.2 – 4.4).

4.8.2 Разложение (4.13) даже при умеренном числе учитываемых волн (N_{max} ≤ 9) воспроизводит характерные осцилляции "измеренной" зависимости системе уравнений (4.20),задаче $S_{11}(f)$. Причем т.е. восстановления коэффициентов α_n, свойственна высокая устойчивость, проявляющаяся в проблем стабильности отсутствии вычислительных И результатов при существенном увеличении числа членов разложения N_{max}. Отклонения
аппроксимированных зависимостей $S_{11}(f)$ от "измеренных" обусловлены тем, что в разложении (4.13) не учитываются "тонкие" дифракционные эффекты, такие как краевые волны и высшие типы волн волновода.

4.8.3 Устойчивость решения СЛАУ (4.20) зависит от сочетания полосы частот Δf , в пределах которой осуществляются измерения, и фокусного расстояния $L_{\phi o \kappa}$ параболоида резонатора. Причем обнаруживается явно выраженный пороговый эффект (рисунок 4.12): полоса частот Δf ограничена снизу условием $\Delta f L_{\phi o \kappa}/c > 1.167$, при нарушении которого резко ухудшается обусловленность соответствующей матрицы.

4.8.4 Методическая погрешность восстановления КО испытуемого образца при выполнении порогового условия и использовании трех калибровочных образцов не превышает значения 0,4%.

4.8.5 Существует возможность измерения частотной зависимости КО *Г(f)* в пределах полосы частот измерений.

Глава 5 Реализация предложенных способов измерений. Практические рекомендации

5.1 Особенности организации и осуществления трактовых измерений

Как отмечалось выше, использование трактовых измерений имеет ряд несомненных достоинств:

- способы свободны от требований наличия помещений с высокой степенью безэховости и при том достаточных электрических размеров, обеспечивающих их проведение в условиях, достаточно близких к облучению образца плоской волной;
- возможность достижения высоких точностных показателей, в том числе за счет использования нового варианта мостовых измерений;
- простота измерительных приспособлений и их невысокая стоимость.

Существенной особенностью трактовых измерений, ограничивающей область их применения является необходимость обеспечения качественного и стабильного электрического контакта между элементами волноводного тракта и поверхностью контролируемого образца материала. Наличие зазоров между ними приводит к появлению изученной волны, проявляющееся, в частности, в увеличении погрешности измерения коэффициента отражения образца.

При введении образца в одномодовый волновод стандартного сечения оценка требуемой степени электрогерметичности вытекает из условия:

$$P_{u_{3\pi}} \ll P_{na\partial} - P_{omp} \tag{5.1}$$

где *P_{nad}*, *P_{omp}* и *P_{изл}* – значения мощности падающей, отраженной волны и волны излученной из-за наличия зазоров.

Для измерений хорошо отражающих материалов, используемых в конструкциях рефлекторов зеркальных антенн, интересующий диапазон значений коэффициентов отражения составляет 0.9...0.99. Отсюда непосредственно следует требование к степени электрогерметичности:

$$(P_{u_{3\pi}}/P_{nad}) < 10^{-3} \dots 10^{-4}$$
 (5.2)

Указанное требование выполнимо при относительно небольших электрических размерах контактирующих поверхностей, например, при контакте стандартного волноводного фланца с участком образца с достаточно плоской поверхностью. Электрогерметичность фланцевых соединений волноводных узлов порядка 30дБ достаточно легко обеспечивается вплоть до частот порядка 30 - 40 ГГц [57].

При более значительной протяженности контактирующих поверхностей, в том числе при использовании рупора с раскрывом, закорачиваемым измеряемым образцом, обеспечить надежный электрический контакт достаточно сложно. Причиной этого может являться неплоскостность среза рупора и образца материала, наличие шероховатостей поверхностей. В результате обеспечение требуемой электрогерметичности на практике становится проблематичным (рисунок 5.1)

Рисунок 5.1 - Измерение при значительной протяженности контакта и неплоскостности поверхности образца

Наличие зазоров не только приводит к появлению излученной волны, но и способствует проявлению резонансных явлений, заключающихся в наличии частотных участков с низкими значениями входного коэффициента отражения.

Для эксперимента была использована рупорная антенна П5-63 заводской номер 33101. Короткозамкнутая заглушка представляла собой лист из дюралюминия Д16АТ. Контакт стенок рупора с заглушкой обеспечивался простым механическим прижатием. Измерения КСВ осуществлялись панорамным измерителем КСВ и ослабления Р2-52 зав. №35506 в полосе частот от 1.6 до 2.2 ГГц. На рисунке 5.2 показан общий вид экспериментальной установки. Качественная «картина» частотной зависимости измеренного коэффициента

отражения показана на рисунке 5.3. В результате эксперимента, почти во всей полосе, наблюдалось значение КСВ, индицируемое как близкое к ∞, т.е. соответствующее коэффициенту отражения близкому к единице. При этом обнаружено, что на частотах 1697 МГц и 2058 МГц наблюдаются резонансные состоящие уменьшении КСВ. причём наиболее явления, В резком высокодобротным является резонанс на частоте 1697 МГц. Резонанс уверенно обнаруживался только при медленной автоматической развёртке – 40 с. Значение резонансной частоты – в режиме ручной перестройки. При этом конкретное значение добротности с использованием прибора Р2-52 неопределимо.

Рисунок 5.2 - Экспериментальная установка

Рисунок 5.3 - Результат измерения. (Хорошо заметен резонанс).

Учитывая изложенное, следует констатировать, что измерение трактовыми способами образцов с большими электрическими размерами при помощи рупорных волноводных элементов, закороченных измеряемым образцом нецелесообразно. В этих случаях можно рекомендовать проводить измерения отражающих свойств при помощи малоразмерных трактовых элементов в ряде точек контролируемого образца, например, как показано на рисунке 5.4, с последующим усреднением.

Рисунок 5.4 - Контроль образцов больших электрических размеров

5.2 Установка изменения КО мостовым способом

5.2.1 Конструкция установки

Установка состоит из векторного анализатора сигналов фирмы Rohde&Schwarz типа ZVA-40, устройства крепления образца материала, двойного T-моста, двух волноводно-коаксиальных переходов и соединительных кабелей. Общий вид установки приведен на рисунке 5.5.

Рисунок 5.5 - Установка для измерения КО мостовым способом

5.2.2 Принцип действия установки

Установка позволяет осуществить измерение коэффициента отражения образца материала в ряде точек. В качестве образца используется диск из обследуемого материала диаметром 160±0.5 мм. Число точек и их расположение определяется пользователем. Измерения могут проводиться для заданного значения частоты, либо в заданной полосе частот.

В установке реализуется 4 варианта измерений коэффициента отражения трактовыми способами:

М1 – прямое непосредственное измерение коэффициента отражения;

- M2 прямое непосредственное измерение мостовым способом;
- М3 измерение мостовым способом с коррекцией амплитудных и фазовых погрешностей мостового устройства;
- М4 измерение с автоматической коррекцией амплитудных и фазовых погрешностей мостового устройства.

В первом способе (М1) для каждой задаваемой точки образца и каждого из значений частот в заданной полосе производится непосредственное измерение коэффициента отражения путем измерения коэффициента S₁₁ нагрузки измерителем ZVA-40 в штатном режиме измерения (рисунок 5.6).

Рисунок 5.6 - Измерение коэффициента отражения. Способ М1

Для каждой *i*-й точки образца и каждого *j*-го значения частоты измеренное значение коэффициента отражения определяется как:

$$\Gamma_{u_{3Mi}}(f_j) = S_{11i}(f_j) / K_1$$
(5.3)

где *K*₁- поправочный коэффициент, учитывающий наличие потерь в коаксиальноволноводном переходе.

Во втором варианте используется мостовой (дифференциальный) способ измерения. Схема измерений показана на рисунке 5.7.

Рисунок 5.7 - Измерение коэффициента отражения. Способ М2

В способе (M2) измеряемая нагрузка и калибровочная нагрузка с коэффициентом отражения Γ_{3m} присоединены к синфазным входам двойного Тмоста. Для каждой задаваемой точки образца и каждого из значений частот в заданной полосе производится непосредственное измерение коэффициента передачи для оставшейся пары входов моста путем измерения коэффициента S_{21} нагрузки измерителем ZVA-40 в штатном режиме измерения: для каждой *i*-й точки образца и каждого *j*-го значения частоты измеренное значение коэффициента отражения определяется как:

$$\Gamma_{u_{3M i}}(f_j) = (K_2 \Gamma_{3m}(f_j) - S_{21 i}(f_j)) / K_3$$
(5.4)

где K_2 и K_3 – усредненные в полосе частот значения $|S_{13}(f) S_{32}(f)|$ и $|S_{14}(f) S_{42}(f)|$ мостового устройства совместно с парой коаксиально волноводных переходов.

Использование поправочных коэффициентов K_2 и K_3 позволяет устранить погрешность измерения, связанную с неидентичностью плеч применяемого Т-моста. Значения поправочных коэффициентов K_2 и K_3 должны быть определены предварительно.

В третьем варианте также используется мостовой (дифференциальный) способ измерения. Схема измерений показана на рисунке 5.7. Отличие от способа M2 состоит в том, что для каждой из частот f_j используются комплексные поправочные коэффициенты $K_2(f_j)$ и $K_3(f_j)$:

$$\Gamma_{u_{3M,i}}(f_j) = (K_2(f_j)\Gamma_{3M}(f_j) - S_{21,i}(f_j)) / K_3(f_j)$$
(5.5)

Использование комплексных поправочных коэффициентов $K_2(f_j)$ и $K_3(f_j)$ позволяет устранить погрешность измерения, связанную с неидентичностью плеч используемого Т-моста, а также неидентичностью устройств, подключаемых между выходами Т-моста, калибровочной и измеряемой нагрузками. Значения поправочных коэффициентов $K_2(f_j)$ и $K_3(f_j)$ должны быть определены предварительно с достаточной точностью.

В четвертом способе также используется мостовой (дифференциальный) способ измерения Схема измерений показана на рисунке 5.7. Отличие от способа M3 состоит в том, что весь цикл измерений проводится дважды. Первый – аналогично способу M3, где определяются значения $\Gamma_{uзм\,i}^{(1)}(f_j)$. Далее меняются местами калибровочная и измеряемая нагрузки и измеряются аналогичным образом значения коэффициентов отражения $\Gamma_{uзм\,i}^{(2)}(f_j)$. Окончательно коэффициент отражения определяется как:

$$\Gamma_{u_{3M}i}(f_j) = \frac{\Gamma_{u_{3M}i}^{(1)}(f_j) - \Gamma_{u_{3M}i}^{(2)}(f_j)}{2}$$
(5.6)

Использование двукратных измерений позволяет устранить погрешность измерения, связанную с неидентичностью плеч используемого Т-моста а также неидентичностью устройств подключаемых между выходами Т-моста И калибровочной и измеряемой нагрузками. В качестве значений $K_2(f_i)$ и $K_3(f_i)$ можно использовать значения K_2 и K_3 – аналогичные используемым в способе M2 усредненные в полосе частот значения $|S_{13}(f) S_{32}(f)|$ и $|S_{14}(f) S_{42}(f)|$ мостового устройства совместно с парой коаксиально волноводных переходов. Способ М4 наиболее трудоемкий в осуществлении, но позволяет осуществлять измерения коэффициента отражения с наибольшей точностью; т.к. в отличие от способа МЗ компенсация неидентичности плеч Т-моста происходит автоматически и не требуется предварительного определения поправочных коэффициентов $K_2(f_i)$ и $K_{3}(f_{i})$.

5.2.3 Алгоритм обработки результатов измерений

В зависимости от выбранного способа (М1 - М4) обработка измеренного массива данных осуществляется согласно правилам (1) – (4).

Далее в пределах задаваемой полосы частот для каждой точки производится:

- вычисление среднего по частоте значения коэффициента отражения;
- вычисление среднеквадратического отклонения измеренных данных при изменении частоты;
- вычисление среднего значения коэффициента отражения по совокупности контролируемых точек;
- вычисление среднеквадратического отклонения значений коэффициента отражения по совокупности контролируемых точек.

Указанные данные выводятся на дисплей и сохраняются в виде протокола. Вид представляемых данных измерений приведен ниже в п. 5.2.4.3

5.2.4 Измерение КО образца

5.2.4.1 Общий порядок проведения измерений

Измерения для реализации обработки согласно способам M2 и M3 проводятся в порядке и последовательности, изложенными в п.п. 5.2.4.2 и 5.2.4.3. Измерения для последующей обработки согласно способу M4 проводятся два раза: первый – одинаков для всех трех вариантов. Второй цикл измерений аналогичен первому, но осуществляется после смены мест калибровочной и измеряемой нагрузок.

5.2.4.2 Измерение коэффициента отражения

1. Для измерения КО необходимо рассоединить фазостабильные кабели.

2. Фазостабильный кабель 1-го порта подсоединить к входу Т-моста, а фазостабильный кабель 2-го порта подсоединить к разностному каналу Т-моста.

3. Установить левое плечо Т-моста в первую заданную точку образца (R_i , φ_i). Для этого использовать механизм радиального перемещения и поворотный механизм основания (10) (рисунок 5.8). При помощи фиксатора (4) закрепить двойной Т-мост (3) в желаемом положении.

1- измерительный прибор ZVA-40; 2 – образец; 3 – двойной Т-мост; 4 – фиксатор;
 5 – коаксиально-волноводный переход; 6 – кабель; 10 - основание
 Рисунок 5.8 - Установка измерения КО с использованием Т-моста

Примечание - необходимо обеспечить надежный контакт нижней поверхности двойного Т-моста с внешней поверхностью образца. Признаком

надежного контакта является стабильный характер графика частотной зависимости измеряемого коэффициента передачи S21, наблюдаемого на экране измерителя ZVA 40.

4. Далее измерить коэффициент передачи S21 установки в заданном частотном диапазоне. Для этого в главном окне прибора выбрать пункт меню «*Trace*». Появится подменю, в котором необходимо выбрать пункт «*Measure*». Справа возникнет всплывающее подменю, в котором необходимо выбрать пункт «S21» и щелкнуть по нему ЛКМ. Данные массива S21 могут быть отражены либо в логарифмическом масштабе «*dB Mag.*», либо в линейном «*Lin Mag*».

Для отображения данных в том или ином виде необходимо провести следующие операции: В главном окне прибора выбрать пункт меню «*Trace*» и щелкнуть на нем ЛКМ. Появится подменю, в котором необходимо выбрать пункт «*Format*». Справа возникнет всплывающее подменю, в котором необходимо выбрать либо пункт «*dB Mag.*», либо пункт «*Lin Mag*», и на выбранном пункте щелкнуть ЛКМ. На экране прибора появится график зависимости коэффициента передачи *S*21 от частоты в заданном диапазоне частот.

5.2.4.3 Сохранение и представление результатов

Сохранение результатов измерений

В главном окне прибора выбрать пункт меню «File» и щелкнуть по нему ЛКМ. Появятся подменю, в которых последовательно необходимо выбрать пункты «*Trade Data*», «*Export Complex Data*». На последнем пункте щелкнуть ЛКМ. Появится окно «*Export Complex Data*», в котором нужно щелкнуть ЛКМ на кнопке со значком клавиатуры компьютера (эта кнопка находится справа посередине окна). В появившемся окне «*On-Screen Keyboard*» ввести имя файла. Файлу должно быть присвоено имя в формате: Метка файла (R_i : fi_i)_(R или L). Метка файла – это любое имя файла. Оно должно состоять только из латинских букв и цифр, все другие символы запрещаются. R_i и fi_i это полярные координаты точки измерения. R указывается в миллиметрах, f_i – в градусах. Координаты записываются в круглых скобках и разделяются точкой с запятой. Префикс R или

L указывает к какому каналу Т-моста был подсоединён образец (*Right* или *Left*). Префикс отделяется от остального имени знаком подчёркивания. Пример правильной записи имени файла: **Obrazez1(50;90)_L**.

После того как имя файла указано, нажмите кнопку «ОК». Появится окно «*Export Complex Data*» с кнопкой «*Save*» внизу, щелкните по ней ЛКМ. Данные массива занесутся в папку пользователя, которую необходимо создать заранее.

Создание графиков результатов измерений

Для создания графиков необходимо в главном окне прибора выбрать пункт меню «*File*» и щелкнуть по нему ЛКМ. Появится подменю, в котором необходимо выбрать пункты «*Print to File*» и на нем щелкнуть ЛКМ. В появившемся окне «*Print to File*» щелкнуть ЛКМ на кнопку со значком клавиатуры, находящуюся справа. В появившемся окне «*On-Screen Keyboard*» ввести имя файла и нажать кнопку «OK». Снова появится окно «*Print to File*», в котором необходимо нажать ЛКМ на кнопку «Save». Данные графика занесутся в папку пользователя, которую необходимо создать заранее.

5.2.4.4 Измерение коэффициента отражения (способ М4)

Для реализации измерений по варианту 4 следует провести полный цикл измерений согласно п.п. 5.2.4.2 и 5.2.4.3. Затем, отсоединив короткозамыкатель от соответствующего плеча моста, присоединить его к противоположному плечу Т-моста. Перевернуть Т-мост на 180° и установить его в установку.

Повторить процесс измерений и сохранения результатов аналогично п.п. 5.2.4.2 и 5.2.4.3.

5.2.5 Обработка и протоколирование результатов измерения

Для обработки сохраненных в памяти ZVA-40 измеренных данных запускается программа «*Statistics R&S*» (щелчком по соответствующей иконке), порядок использования которой изложен в Приложении А.

5.3 Установка измерения КО в поле прошедшей волны

5.3.1 Конструкция установки

Установка состоит из векторного анализатора сигналов фирмы *Rohde&Schwarz* типа ZVA-40, малогабаритной безэховой камеры с устройством для установки образца материала, двух облучателей в виде волноводно-коаксиальных переходов и соединительных кабелей. Общий вид установки приведен на рисунках 5.9 – 5.12.

1–БЭК, 2-устройство крепления образца, 3-4–облучатели, 5-6 кабели, 7–образец. Рисунок 5.9 - Установка измерения КО в поле прошедшей волны

Рисунок 5.10 — Общий вид установки

Рисунок 5.11 - Установка с выдвинутым калибровочным диском

Рисунок 5.12 — Установка с выдвинутой рамкой с сетеполотном

5.3.2 Порядок измерения КО образца

Измерения для последующей обработки проводятся в три этапа: первый – в отсутствии образца, второй – для сплошного металлического образца, третий – для измеряемого образца с сетеполотном.

Для этого необходимо к двум рупорам безэховой камеры подсоединить коаксиально-волноводные переходы (КВП) и с помощью двух фазостабильных кабелей подключить векторный анализатор сигналов ZVA-40 (рисунок 5.10). Измерения осуществляют следующим образом.

- 1) В выбранной директории компьютера прибора ZVA-40 создают папку с ключевым именем *«КР»*.
- Измеряют коэффициент передачи между КВП в установленном частотном диапазоне с пустой рамкой и сохраняют массив данных в файле S12(1) папки «KP».
- Повторяют измерения для случая, когда в гнездо установки установлен металлический экран и сохраняют массив коэффициента передачи в файле *S12(2)* папки «*KP*».
- 4) Вставляют в гнездо безэховой камеры рамку с испытуемым сетеполотном и записывают массив коэффициента передачи в файл *S12(3)* папки *«КР»*.
- 5) Запускают программу *«КО R&S.exe»* щелчком по ее иконке и, следуя инициируемому программой диалогу, обрабатывают результаты измерений и получают оценку КО измеряемого образца.
- 5.3.3 Результаты тестовых измерений

Согласно методике, изложенной выше, проведены измерения двух образцов сетеполотна T15 (крупная ячейка) и A15 (мелкая ячейка). Измерения проводились для образцов диаметром 200 мм, в диапазоне частот от 27 до 30 ГГц. Результаты сведены в таблицу:

Образец	Измеренный коэффициент отражения, усредненный в полосе
	частот
T15	0,942
A15	0,993

Таблица 5.1 – Результаты измерений КО образцов сетеполотна

5.3.4 Программно-методическое обеспечение

Для осуществления измерений разработана программа KO R&S, загружаемая в память измерительного прибора, например, в директорию C:\Program Files\ PMO KO \PMO KO 2\. Порядок использования программы изложен в Приложении Б.

5.4 Установка с полуоткрытым резонатором

5.4.1 Состав оборудования. Требования к точности изготовления резонатора

Установка (рисунок 5.13) состоит из дюралевой заготовки с диаметром Ø 170 мм и толщиной 40 мм с параболическим мениском и прямоугольным отверстием в центре, в котором закреплен волновод WR-28 для *Ка* диапазона (26÷38 ГГц) с фланцем. Фокусное расстояние параболоида равно 70 мм, внешний диаметр мениска – 150 мм. Эта конструкция имеет три ножки для установки на рабочем столе. Коаксиально-волноводный переход (КВП) с розеткой Ø 2,4 мм подсоединяется к фланцу винтами, чтобы при необходимости можно было его заменить.

Три диэлектрические стойки фиксируют на необходимом расстоянии относительно параболического мениска жесткий калибровочный или испытуемый диск (рисунок 5.13*a*) или опорное диэлектрическое кольцо (рисунок 5.13*b*), на которое кладется измеряемый образец сетеполотна в рамке Ø200мм (или более).

а) для жестких дисков; б) для сетеполотна Рисунок 5.13 — Установка с полуоткрытым резонатором

К установке фазостабильным коаксиальным кабелем через соответствующий коаксиально-волноводный переход подключается векторный анализатор сигналов типов ZVA 40, или аналогичный прибор для измерения частотной характеристики $S_{11}(f)$ отраженного сигнала на входе установки. Результаты измерений (реальная и мнимая части измеренных сигналов) должны сохраняться в приборе виде *Excel*-файлов соответствующего формата.

Оригинальная часть установки включает в себя:

• симметричное параболическое зеркало диаметра $D_{3epk}=150$ мм с фокусным расстоянием $L_{\Phi o \kappa} = 70$ мм;

• облучатель в виде открытого конца волновода, сечение которого совпадает с сечением коаксиально-волноводного перехода ZVA-40 и соответствующий фланец;

 три стойки и сменную обойму из радиопрозрачного материала для фиксации калибровочного или испытуемого образца в плоскости, перпендикулярной оси параболоида и расположенной по середине между вершиной параболоида и его фокусом.

К размерам облучателя и к их предельным отклонениям нет жестких требований (вполне достаточен 6-ой квалитет). Размер рабочей части зеркала составляет примерно $10\div15\lambda_0$. Как известно [13], требования к точности изготовления зеркала возрастают по мере увеличения его волнового размера. Поскольку в рассматриваемой измерительной установке габариты зеркала не велики, то допустимы отклонения от профиля зеркала в пределах $\pm 0.01\lambda_0$ и шероховатости порядка $0.001\lambda_0$.

Наиболее жесткими являются допуски на погрешности угла установки образца относительно оси зеркала. Размер фокального пятна зеркала составляет $\Delta L \approx L_{\Phi}\lambda_0/D_{3epk} = 0.65\lambda_0$. В первом приближении из-за смещения плоскости образца на угол $\Delta \psi$ после трехкратного отражения центр фокального пятна смещается в поперечном направлении (по раскрыву рупора) на величину $\Delta \xi \approx 3L_{\Phi}$

 $\Delta \psi$. Естественно потребовать, чтобы выполнялось неравенство $\Delta \xi < (0.1 \pm 0.2) \Delta L$, что приводит к условию $\Delta \psi < (0.1 \pm 0.2) \lambda_0 / 3 \emptyset_{3epk}$ или $\Delta \psi < (0.2^\circ \div 0.4^\circ)$. Смещение образца в продольном направлении приводит к значительно меньшей деформации фокального пятна, и его можно ограничить значением $\pm 0.01 L_{\Phi_{0k}}$.

В принципе, испытуемый образец и калибровочные образцы могут быть плоскими пластинами с любыми, но одинаковыми обводами: круглыми, квадратными или прямоугольными. Естественно, что переход к новой форме требует не только замены обоймы, но и проведения калибровки заново. Еще раз повторим, что при наличии программного продукта, способного с высокой точностью моделировать зеркало с отражателем в раскрыве, измерение частотных характеристик $S_{11}(f)$ калибровочных образцов может быть заменено электродинамическим моделированием конкретной установки при заданных проводимостях калибровочных образцов.

Общие сведения о программе

Программа "PMO_KO_3" обеспечивает процесс измерений, включающий этапы калибровки и собственно измерения КО образца.

Для обеспечения "дружественного интерфейса", число функциональных кнопок сокращено до минимума; в программу встроены функции анализа исходных данных и диалога в случае необходимости; в качестве десятичного разделителя используется точка, но пользователь, привыкший к запятой, может вводить запятую: программа воспримет и отобразит ее как точку. Общие для обеих закладок кнопки и окошки редактирования размещены вне закладок. Поскольку при внесении изменений в установку следует адаптировать программу, то внизу формы оставлена рамка с аппроксимирующими коэффициентами { α_n }, значения которых важно контролировать в режиме настройки программы. Кнопки "Save", расположенные рядом с точечными рисунками, позволяют сохранить их в формате .JPEG для включения в текстовые документы-протоколы.

Пользователю предоставляется свобода в структурировании и хранении используемых программой данных в рамках вполне естественных ограничений в части формата текстовых файлов и ключевых символов в составе их имен. Но на этапе освоения программы целесообразно все необходимые папки и файлы записывать в директории, содержащей ЕХЕ-файл программы.

Структура программы, отражающая логику ее работы, представлена на рисунке 5.14.

Рисунок 5.14 — Структура программы "РМО_КО_3"

Программа запускается щелчком левой клавиши мышки (↓ЛКМ) по иконке . Если в текущей директории, где расположена ЕХЕ-файл программы программа, существует папка «ЭТАЛОНЫ», то после запуска программно выполняется ↓ЛКМ по кнопке КАЛИБРОВКА и осуществятся указанные на рисунке 5.14 операции и вычисления, составляющие суть процесса калибровки. «ИЗМЕРЕНИЕ». Повторные Активизируется кнопка щелчки ПО кнопке КАЛИБРОВКА ничего не изменяют. Следует установить испытуемый образец, осуществить измерение $S_{11o\delta p}(f)$ после чего выполнить $\downarrow \Pi KM$ по кнопке «ИЗМЕРЕНИЕ». Всплывет стандартное диалоговое окно для поиска и открытия

файла. Необходимо указать файл с результатами измерений. После этого выполняются расчеты, и в сопровождении звуковых сигналов на экран монитора выводится значение КО образца.

В программе "PMO_KO_3" обработки данных измерений реализован следующий итерационный алгоритм решения уравнения $\alpha_3(\Gamma) = \alpha_{300p}$.

Нулевое приближение находится за счет линейной аппроксимации $\Gamma_{o\delta p}^{(0)} = \Gamma_1 + (\Gamma_{max} - \Gamma_{min})(\alpha_{max} - \alpha_{min})/(\alpha_{o\delta p} - \alpha_{min})$. На шаге *i* осуществляется уточнение предыдущей величины $\Gamma_{o\delta p}^{(i-1)}$ с использованием значения производной $\xi_n'(\Gamma_{o\delta p}^{(i-1)})$: $\Gamma_{o\delta p}^{(i)} = \Gamma_{o\delta p}^{(i-1)} + (\xi_n(\Gamma_{o\delta p}^{(i-1)}) - \alpha_{noo\delta})/\xi_n'(\Gamma_{o\delta p}^{(i-1)})$. Процесс уточнений прекращается по достижении точности 10^{-4} .

Порядок измерения КО выглядит следующим образом:

• Векторный анализатор сигналов настраивается на режим измерения комплексного коэффициента отражения *S*₁₁(*f*) в заданной полосе частот;

• Измеряется частотная характеристика $S_{o\delta n}(f)$ коэффициента отражения установки безо всякого образца в раскрыве, т.е. открытого конца волновода, находящегося в вершине параболического мениска. В текущей директории программы формируется папка сайогайогайогайогайогайогая и в нее записываются результаты измерений в виде текстового файла с расширением *.csv и с именем, которое начинается ключевыми символами "WGD_" и может продолжаться полезными комментариями;

• Затем на фиксирующие опоры или кольцо установки поочередно помещаются калибровочные образцы, КО которых известны, и в аналогичном формате результаты измерений каждого из них записываются в папку «Calibration»;

• Для определения КО испытуемого образца необходимо измерить его частотную характеристику $S_{11}(f)$ и сохранить результаты в виде текстового файла с расширением ".csv", как это формируется векторным анализатором ZVA-40. Директория файла и его имя произвольны. В режиме «ИЗМЕРЕНИЯ» программа "РМО_КО 3" запросит путь к этому файлу, вычислит коэффициенты

аппроксимации { α_n } для характеристики $S_{11}(f)$ образца и, решив систему уравнений (4.15), по данным о КО калибровочных образцов определит коэффициент a_3 полинома (4.17), вычислит и выведет на монитор значение КО образца.

Дополнительная информация по работе с разработанным программным обеспечением установки с полуоткрытым резонатором содержится в Приложении В.

5.4.2 Проблема калибровочных образцов

Калибровочные образцы играют решающую роль в обеспечении точности измерений. В принципе, можно вместо калибровочных образцов использовать расчетные зависимости, полученные результате В аккуратного электродинамического моделирования системы: облучатель, зеркало И калибровочный образец - диск с проводимостью g_{2m} , соответствующей желаемому значению КО Г_{эт}. При этом, если толщина калибровочного образца значительно превышает толщину скин-слоя, то его КО находится по известной формуле $\Gamma_{_{_{2m}}} = \left|1 - \sqrt{\epsilon' - jg_{_{2m}}/(\omega\epsilon_{_0})}\right| / \left|1 + \sqrt{\epsilon' - jg_{_{2m}}/(\omega\epsilon_{_0})}\right|$. В противном случае, необходимо учитывать конечную толщину пластины калибровочного образца.

Ясно, однако, что нет ничего лучшего реальных калибровочных образцов. Среди возможных конструкций представляется оправданным вариант пленки на диэлектрической подложке. Во-первых, соответствующий технологический процесс может быть осуществлен с высокой точностью на стандартном оборудовании. Во-вторых, для плоскопараллельных структур известны точные способы расчета (вплоть до аналитических формул). В рамках такой конструкции для обеспечения близкого к единице значения КО возможны две разновидности:

- пленка на металле, выполненная из материала с потерями для поглощения определенной доли энергии;
- пленка метала толщиной менее скин-слоя, пропускающая малую долю энергии поля в подложку из стекла или керамики.

129

В интересах отработки технологии изготовления калибровочных образцов нами была разработана программа *Film_Layer_2*.

5.5 Выводы по Главе 5

5.5.1 Проведен сравнительный анализ достоинств и недостатков трех вариантов измерений: трактовых способов, измерений в поле прошедшей волны и способа полуоткрытого резонатора. На его основе выработаны общие рекомендации по использованию указанных способов для измерений образцов различных материалов:

- 1) Трактовые способы могут использоваться для металлических образцов, а металлизированной также композитных материалов С отражающей Основным ограничением поверхностью. ИХ применения является необходимость обеспечения качественного электрического контакта между поверхностью образца и элементами измерительной установки. Это означает необходимость использования специально подготовленных образцов с высокой степенью плоскостности поверхности и класса ее шероховатости.
- 2) Способ измерения в поле прошедшей волны наиболее целесообразен для сетеполотна из металлических или металлизированных нитей. В этом случае состоянию поверхности образца отсутствуют. высокие требования К Основным ограничивающим фактором является необходимость измерительных приборов, обеспечивающих использования низкую погрешность измерений коэффициента передачи
- 3) Способ полуоткрытого резонатора может успешно использоваться для любых материалов, что относится к числу его важных достоинств. Его недостатком является необходимость использования калибровочных образцов с точно известными значениями КО в частотном диапазоне измерений.

5.5.2 На основе способов измерений, проанализированных в главах 2 – 4, разработаны, изготовлены и испытаны экспериментальные образцы измерительных установок.

ЗАКЛЮЧЕНИЕ

Основные результаты работы состоят в следующем:

1. Разработаны и проанализированы усовершенствованные способы измерения КО материалов с электропроводящей поверхностью, осуществляемые в волноводных трактах, позволяющие снизить методическую и инструментальную погрешности (на дифференциальный способ измерения КО с использованием двойного Т-моста получен патент RU 2488838).

2. Предложен и обоснован способ определения КО металлического сетеполотна, основанный на измерении коэффициента прохождения.

3. Предложен и исследован способ бесконтактного определения КО образцов из углепластика или сетеполотна по результатам измерения частотной характеристики полуоткрытого резонатора с испытуемым образцом (получен патент RU 2503021).

4. Посредством аналитических исследований и компьютерного моделирования исследованы потенциальные точности предложенных способов измерения КО.

5. Получены зависимости, характеризующие влияние основных конструктивных параметров установок на точность измерения КО, выработаны рекомендации к конструктивным параметрам измерительных установок.

6. Созданы алгоритмические и программно-технические средства, автоматизированные стенды для измерения КО, реализующие предложенные способы измерения с визуализацией экспериментальных данных в реальном масштабе времени.

Результаты работы могут быть использованы для создания аналогичных по функциональному назначению измерительных установок для иных частотных интервалов СВЧ и КВЧ диапазонов. Кроме того, представляется важным и интересным направлением развития работы создание калиброванных образцов с коэффициентами отражения 0,85 ÷ 0,95.

131

Список сокращений и условных обозначений

Сокращения:

ВЧ – высокая частота;

- ДН диаграмма направленности;
- КА космический аппарат;
- КБВ коэффициент бегущей волны;
- КВП коаксиально-волноводный переход;
- КВЧ крайневысокая частота;
- КД конструкторская документация;

КЗ – короткое замыкание;

КИП — коэффициент использования поверхности;

КО — коэффициент отражения;

КПД – коэффициент полезного действия;

КСВ (или КСВН) — коэффициент стоячей волны в фидере;

КУ – коэффициент усиления;

ЛКМ – левая кнопка мыши;

- НТК научно-техническая конференция;
- ПК персональный компьютер;

ПМО — программно-методическое обеспечение;

- ПО программное обеспечение;
- ПЭВМ персональная электронная вычислительная машина;
- РПМ радиопоглощающий материал;
- РПП радиопоглощающее покрытие;
- СВЧ сверхвысокая частота;
- СКО среднеквадратичное отклонение;
- СЛАУ система линейных алгебраических уравнений;
- ХХ холостой ход;
- ЭМВ электромагнитная волна;
- ЭПР эффективная площадь рассеяния.

Обозначения:

- [...] размерность физической величины;
- Γ коэффициент отражения;
- d толщина слоя углепластика;
- *g* [См/м] удельная проводимость среды;
- Z_0 волновое сопротивление свободного пространства (120 π [Ом]);

Ż — комплексное сопротивление среды с потерями;

 $\dot{Z}_{S} = R_{S} + jX_{S}$ — комплексное поверхностное сопротивление (поверхностный импеданс);

 k_0 — волновое число свободного пространства ($2\pi/\lambda_0$);

k — волновое число среды с потерями;

 $L_{\text{аперт}}$ - размер апертуры;

Р – мощность излучения;

 R_S — поверхностное сопротивление;

*S*₁₁ — коэффициент отражения на входе установки;

Q — добротность резонатора;

Y – комплексная поверхностная проводимость;

λ - длина волны;

 δ_{-} погрешность измерения амплитуды;

Δ - погрешность измерения фазы;

η – коэффициент использования поверхности;

 μ_0 — диэлектрическая проницаемость вакуума (4 π 10⁻⁷ [Ф/м]);

 ε_0 — диэлектрическая проницаемость вакуума (1/(36 π) 10⁻⁹ [Φ /м]);

ε' — относительная диэлектрическая проницаемость среды.

Список литературы

- 1. Измерение мощности на СВЧ (Серия «Радиоэлектронные измерительные приборы»). М.: Сов. радио, 1976
- 2. Вайсфлох А. Теория цепей и техника измерений в дециметровом и сантиметровом диапазонах; пер. с нем. М.: Сов. радио, 1961.
- 3. Чернушенко А. М., Майбородин А. В. Измерение параметров электронных приборов дециметрового и сантиметрового диапазонов волн; Под ред. А. М. Чернушенко М.: Радио и связь, 1986
- 4. Гинзтон Э. Л. Измерения на сантиметровых волнах; Пер. с англ. М.: Изд.иностр. лит., 1960
- 5. Техника измерений на сантиметровых волнах (в двух частях); Пер. с англ. М.: Сов. радио, 1949
- 6. Бурдун Г. Д. Радиоизмерения на миллиметровых волнах Харьков: Изд-во Харьковск. ун-та, 1958
- 7. Измерения на миллиметровых и субмиллиметровых волнах: Методы и техника / Р. А. Валитов, С. Ф. Дюбко, Б. И. Макаренко и др. М.: Радио и связь, 1984
- 8. Креопалова Г. В., Лазарева Н. Л., Пуряев Д. Т. Оптические измерения: Учебник для вузов М.: Машиностроение, 1987
- 9. Пивак А.В. Измерения волнового сопротивления коаксиальных трактов// Мир измерений. 2007, № 3.
- 10.Поверхностные волны и микроволновые устройства контроля электрофизических параметров магнитодиэлектрических покрытий на металле / Под ред. Н.П.Федорова. М.: Машиностроение, 2004
- 11. Семенова Г.П. и др. Поляризационная погрешность рефлектометра многократного отражения// Оптико-механическая промышленность.- 1988, №4. С.9-11.
- 12. Жевлакова Т.А. и др. Схема с многоходовой кюветой и интегрирующей сферой для измерения коэффициента зеркального отражения при длине волны 10,6 мкм// Оптико-механическая промышленность. 1983, №7.- С.31-32.
- 13. Алимин Б.Ф. Техника измерений коэффициентов отражения поглотителей электромагнитных волн// Зарубежная радиоэлектроника. 1977, №2. С.91.
- 14. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз, 1963, 192 с.

- 15. Пашков А.Н. и др. Радиоизмерения. М.: Мин.Обороны, 1980, С.224 225.
- 16. Приборы для неразрушающего контроля материалов и изделий./ Справочник под ред. В.В. Клюева. Кн. 1. М.: Машиностроение, 1976, С.198 203.
- 17. ЗайцевА.Н., Иващенко П.А., Мыльников А.В. Измерения на сверхвысоких частотах и их метрологическое обеспечение.- М: Изд. Стандартов, 1989.
- 18.. Измерения в электронике: Справочник/ Под ред. В.А. Кузнецова.- М.: Энергоатомиздат, 1987.
- 19. Мищенко С.В., Малков Н.А. Проектирование радиоволновых (СВЧ) приборов неразрушающего контроля материалов. Тамбов: Издательство Тамбовского гос. технич. ун-та, 2003
- 20. Mario Saba, Gen Ishikawa Анализ отражательной способности на материале из углеродного волокна на смоляной основе для высокочастотных антенн и рефлекторов// SAMPE 2004. - Лонг-Бич, Калифорния, США, 2004г.
- 21.Гаврилов А.А. и др. Измерение угловой зависимости модуля коэффициента отражения радиопоглощающих материалов и покрытий в свободном пространстве// Измерительная техника. 2012, №7. С.58-62
- 22.Сусляев В.И. и др. Комплекс методов и средств радиоволновой диагностики фундаментальных характеристик гетерогенных материалов и сред в гигагерцовом и терагерцовом диапазонах// Известия высших учебных заведений. – 2011,№9/2. – С.138-146
- 23. Robert C. Romeo, Peter C. Chen Технология сверхлегкого композитного реплицированного зеркала// Семинар по проблемам сверхлегкой космической оптики. - Напа, Калифорния, США, 1999г.
- 24. C. Abegg, P. Archer & T. Le Goff, Development of high performances large single shaped reflectors// EADS Launch Vehicles, 52nd International Astronautical Congress. 1-5 Oct 2001/Toulouse, France
- 25.Устройство для измерения коэффициента отражения электромагнитной волны: пат. 2377584 Рос. Федерация: МПК7 G01S13 G01R29/08 / Акиньшина Г.Н., Емельянов Е.С., Кирьянов О.С. и др.; патентообладатель ФГНИИЦ радиоэлектронной борьбы и оценки эффективности снижения заметности . №2008147912/09; заявл.04.12.08; опубл. 27.12.09
- 26.Способ измерения коэффициента отражения и устройство для его осуществления: пат. 2362176 Рос. Федерация: МПК G01R27/06 /; Покусин Д.Н., Субботин И.Ю., Мартынов А.П. и др.; патентообладатель ЦНИРТИ им. академика А.И. Берга. №2007147711/28; заявл. 24.12.07; опубл. 20.07.09
- 27.Способ измерения коэффициента отражения по мощности радиопоглощающего материала в сверхширокой полосе частот: пат. 2346286

Рос. Федерация: МПК G01R27/06 G01S13/00 / Бондаренко В.В., Власенко Е.Ю., Гаврилов А.А. и др.; патентообладатель ФГНИИЦ радиоэлектронной борьбы и оценки эффективности снижения заметности . - №2007125304/28; заявл.04.07.07; опубл. 10.02.09, Бюл. №4

- 28.Способ дистанционного коэффициента определения отражения электромагнитной волны от границы раздела «воздух -горизонтальная поверхность подстилающей среды»: пат. 2346266 Рос. Федерация: МПК Мордвинкин G01N27/00; Бирульчик В.П., Шавин П.Б., И.Н.: патентообладатель НПП «Полет». - №2007133019/28; заявл. 03.09.07; опубл. 10.02.09
- 29. Устройство для измерения коэффициента отражения радиоволн от радиопоглощающих покрытий: пат. 2339048 Рос. Федерация: МПК G01R27/06 / Беляев В.В., Богданов Ю.Н., Леньшин А.В. и др.; патентообладатель ФГНИИЦ радиоэлектронной борьбы и оценки эффективности снижения заметности. №2007143648/09; заявл.26.11.07; опубл. 20.11.08, Бюл.№32
- 30.Способ измерения параметров структуры «металлическая пленка полупроводниковая или диэлектрическая подложка»: пат. 2326368 Рос. Федерация: МПК G01N22 G01B15/02 / Усанов Д.А., Абрамов А.В., Скрипаль А.В. и др.; патентообладатель Саратовский гос. ун-т им. Н.Г. Чернышевского. №2006144142/28; опубл. 10.06.08
- 31.Способ измерения локальных энергетических частотных спектров и коэффициента отражения радиопоглощающего материала: пат. 2321007 Рос. Федерация: МПК G01R027/06 / Бондаренко В.В., Гаврилов А.А, Забалуев В.Е.; патентообладатель ФГНИИЦ радиоэлектронной борьбы и оценки эффективности снижения заметности. №2006130941/28; опубл. 27.03.08
- 32.Рефлектометр на основе многоходовой оптической кюветы: пат. 2281476 Рос. Федерация: МПК G01N021/55 / Борейшо А.С., Маламед Е.Р., Морозов А.В. и др.; патентообладатель НПП «Лазерные системы». - №2005103772/28; опубл. 10.08.06
- 33.Рефлектометр многократного отражения на основе плоских зеркал: пат 2281471 Рос. Федерация: МПК G01M011/02 G01N021/55 / Борейшо А.С., Маламед Е.Р., Морозов А.В. и др.; патентообладатель НПП «Лазерные системы». №2005103782/28; опубл. 10.08.06
- 34.Способ панорамного измерения модуля коэффициента отражения СВЧ двухполюсника: пат. 2253874 Рос. Федерация: МПК G01R027/06 / Чупров И.И., Лобынцев С.В.; патентообладатель Курский завод «Маяк».; опубл. 10.06.05
- 35.Устройство для измерения малых коэффициентов отражения: авт.св-во 511552 СССР: МПК G01R27/06 / Расин А.М., Колмаков Ю.П., Голдобина Л.С. и др.; №2068401/09; заявл. 16.10.74; опубл. 25.04.76, Бюл.№1

- 36.Устройство для измерения малых коэффициентов отражения: авт.св-во 420956 СССР: МПК G01R27/06 / Расин А.М., Войтович Н.И., Колмаков Ю.П. и др.; №1879300/26-9; заявл. 30.01.73; опубл. 25.03.74, Бюл.№11
- 37.Способ отражения измерения коэффициента радиоволн OT Федерация: радиопоглощающих покрытий: пат. 2234101 Poc. МПК G01R027/06 /Беляев В.В, Богданов Ю.Н., Виноградов А.Д. и др.; патентообладатель 5 ЦНИИИ МО РФ. - №2002121181/09; заявл. 05.08.02; опубл. 10.08.04
- 38.Рефлектометр: пат. 2436107 Рос. Федерация: МПК G01R027/06 / Лобанов Б.С., Сухоруков А.Г., Субботин И.Ю. и др.; патентообладатель ЦНИРТИ им. академика А.И. Берга. №2010123736/28; заявл. 11.06.10; опубл. 10.12.11
- 39.Способ определения коэффициента отражения поверхности вещества: пат. 2117952 Рос. Федерация: МПК G01R27/00 / Андреев А.Ю., Кобак В.О.; патентообладатель ЦНИИ им. акад. А.Н. Крылова. - заявл. 29.09.93; опубл. 20.08.98
- 40.Рефрактометр СВЧ: авт.св-во 467298 СССР: МПК G01R27/06 / Лаптий В.К., Якубчук Г.Т.; заявл. 29.05.73; опубл. 15.04.75, Бюл.№14
- 41.СВЧ-рефлектометр: пат. 2207580 Рос. Федерация: МПК G01R027/06 / Никулин С.М., Хилов В.П., Налькин М.Е.; патентообладатель Хилов В.П. - №2001132241/09; заявл. 28.11.01; опубл. 27.06.03
- 42.Intra-cavity total reflection for high sensitivity measurement of optical properties: pat. 5943136 USA: Int.Cl. G01N 21/00 / Andrew C.R. Pipino, Jeffrey W. Hudgens – appl. no. 08/962170; filed Oct. 31,1997; date of patent Aug. 24, 1999
- 43.Intra-cavity total reflection for high sensitivity measurement of optical properties: pat. 5986768 USA: Int. Cl. G01N 21/00 / Andrew Charles Rule Pipino appl. no. 09/188415; filed Nov. 10, 1998; date of patent Nov. 16, 1999
- 44.RF measurement system incorporating a ream assembly and method of using the same: pub. no. US 2008/0238405 A1 USA: Int.Cl. G01R 23/16 / Todd Steven Marshall, Rory Lynn Van Tuyl appl. no. 11/729105; filed Mar. 28,2007; pub. date Oct. 2, 2008
- 45.Systems and method for classifying a substance: pub. no. US 2009/0167322 A1 USA: Int.Cl. G01R 27/06, G01R 29/08 / Erik Edmund Magnuson, Sankaran Kumar, Peter Victor Czipott appl. no. 11/965968; filed Dec. 28,2007; pub. date Jul. 2, 2009
- 46.Гольдштейн Л.Д., Зернов Н.В. Электромагнитные поля и волны.- М.: «Сов. Радио», 1971. 662с.
- 47.Петровский В.И., Седельников Ю.Е. Электромагнитная совместимость радиоэлектронных средств. М.: Радио и связь, 1986. 216с.

- 48.Красюк Н.П., Дымович Н.Д. Электродинамика и распространение радиоволн. М.:Высшая школа, 1974. 536с.
- 49. Справочник по радиолокации./ Под ред. М.Сколника. Том 1. М.: Сов.Радио, 1976. 466с.
- 50. Радиолокационные методы исследования Земли./ Под ред. Ю.С.Мельникова М.: Сов Радио, 1979. 316 с.
- 51.Сайт фирмы Роде и Шварц [Электронный ресурс]: URL: http:// www.rohde-schwarz.ru
- 52.Бухштаб М. А. Измерения малых оптических потерь. Л.: Энергоатомиздат, 1988
- 53.Застела М.Ю. Основы радиоэлектроники и связи: Учебное пособие. Ч.2. Казань: ЗАО «Новое знание», 2009. 340 с.
- 54. Сазонов Д.М. Антенны и устройства СВЧ. М: Высшая школа, 1988.–432 с.
- 55.Мышкис А.Д. Прикладная математика для инженеров. Специальные курсы. 3-е изд., доп., М.: ФИЗМАТЛИТ, 2007. 688 с.
- 56. Технический отчет о СЧ ОКР «Разработка программно-методического обеспечения для измерения коэффициента отражения от плоских образцов» КГТУ им. А.Н. Туполева, Казань, 2009. – 148с.
- 57. Фельдштейн А.Л., Явич Л.Р., Смирнов В.П. Справочник по элементам волноводной техники. М.: Связь, 1967. –652 с
- 58.Канторович Л. В., Крылов В. И. Приближённые методы высшего анализа. 5-е изд. Л.-М., 1962.
- 59.Михлин С. Г. Вариационные методы в математической физике. 2-е изд. М.-Л. 1970.
- 60. Флетчер К. Численные методы на основе метода Галёркина. М.-Мир 1988.
- Андрушевский Н.М. Анализ устойчивости решений систем линейных алгебраических уравнений ; Учебное пособие. – М.; Изд. отдел фак-та ВМиК МГУ имени М.В. Ломоносова; Макс Пресс, 2008. – 71 с.
- 62. Деммель Дж. Вычислительная линейная алгебра. Теория и приложения. Пер. с англ. М.: Мир, 2001. 430 с., ил.
- 63.Методы решения некорректных задач. Тихонов А.Н., Арсенин В.Я.: 2-е изд. М.:Наука. Главная редакция физико-математической литературы, 1979.
- 64.Матрицы и вычисления. Воеводин В.В., Кузнецов Ю.А. М.: Наука Главная редакция физико-математичской литературы, 1984. 320 с.

- 65.Ильин В.А, Позняк Э.Г. Линейная алгебра: Учеб. для вузов 4-е изд.- М. Наука. Физматлит, 1999 296 с.
- 66.Ф.Р. Гантмахер Теория матриц 2-е изд., дополн. М.: Наука Главная редакция физико-математичской литературы, 1966. 577 с.
- 67.Сборник задач по математике для втузов. В 4-х частях. Ч.1. Линейная алгебра и основы математического анализа: Учебное пособие для втузов/Блогов В.А., Демидович Б.П., Ефимов А.В. и др.. Под общим руководством А.В. Ефимова и Б.П. Демидовича – 3-е изд., испр. – М.: Наука. Главная редакция физикоматематической литературы, 1993. – 480с.
- 68. Андре Анго Математика для электро- и радиоинженеров. М.: .: Наука Главная редакция физико-математичской литературы, 1964. 772 с.
- 69.Карлинер М.М. Электродинамика СВЧ, курс лекций, изд. 2-е. Новосибирск: изд. Новосибирского гос. университета, 2006. 258 с..
- 70.Дробахин О.О., Доронин А.В. Применение нейросетевых технологий для повышения достоверности оценок параметров перемещения неплоских элементов конструкций.// Искусственный интеллект. 2009,№3.
- 71.Харвей А.Ф. Техника СВЧ. Том 1. М.: Сов. Радио, 1965 -784 с.
- 72. Фролов О.П., Вальд В.П. Зеркальные антенны для земных станций спутниковой связи. М.: Горячая линия–Телеком, 2008. 496 с.
- 73. А.Н.Зайцев, П.А.Иващенко, А.В.Мыльников Измерения на сверхвысоких частотах М.:Изд-во стандартов, 1989. 310с.
- 74. Ж.Будурис, П.Шеневье Цепи сверхвысоких частот М.: изд-во Сов.Радио, 1979. 286 с
- Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ - М.: Связь, 1965. 352с.
- 76. Анализаторы цепей векторные E8361A/C, E8362B/C, E8363B/C, E8364B/C. Описание типа. М.: 32 ГНИИИ МО РФ, 2008.- 11с.
- 77. Анализаторы электрических цепей векторные ZVA50, ZVA67, ZVA8. Описание типа средств измерений. – М.: Федер. аген-во по тех регул. и метрол., 2011.- 9 с.
- 78.Романов А.Г., Чони Ю.И. Измерение коэффициента отражения плоских рефлекторов на основе полуоткрытого резонатора // Радиотехника.- 2013. -№6. – С. 114-117
- 79. Романов А.Г., Седельников Ю.Е. Измерение коэффициента отражения сетчатых материалов // Вестник Казанского Государственного Технического

Университета им. А.Н. Туполева. 2013.№1. - Казань : Изд-во Казан. гос. техн. ун-та. С.81-85

- 80. Способ измерения коэффициента отражения СВЧ нагрузки \Гордеев А.В., Данилов И.Ю., Лавров В.И и др\: пат. RU 2488838 Рос. Федерация. № 2011144691/28; заявл. 03.11.11; опубл. 27.07.13, Бюл. № 21
- 81. Способ измерения коэффициента отражения и устройство для его осуществления \Аюпов Т.А., Выгонский Ю.Г., Гордеев А.В. и др.\: пат. RU 2503021 Рос. Федерация. №2011154701: заявл. 30.12.11; опубл. 27.12.2013, Бюл.№36
- 82.Романов А.Г. Измерение коэффициентов отражения материалов методом восстановления // Актуальные проблемы науки: сб. науч. тр. по мат-лам междунар. науч.-практ. конф. 30 мая 2011 г.:в 4 частях. Часть 4; М-во обр. и науки РФ. Тамбов: Изд-во ТРОО «Бизнес-Наука-Общество», 2011. - С.110-111
- 83.Романов А.Г., Седельников Ю.Е. Повышение точности измерения коэффициентов отражения материалов рефлекторов зеркальных антенн реконструктивными методами // Итоги диссертационных исследований. Том 1. Материалы III Всероссийского конкурса молодых ученых. М.: РАН, 2011. С.64-73
- 84.Романов А.Г., Чони Ю.И. Измерение коэффициента отражения углепластовых рефлекторов // Проблемы техники и технологий телекоммуникаций ПТиТТ-2011: Материалы XII Международной научно-технической конференции. – Казань: 2011. – С. 387-388
- 85.Романов А.Г., Чони Ю.И. Использование кратных отражений для повышения точности измерения качества плоских рефлекторов // Современные проблемы радиоэлектроники : сб. науч. тр. / науч. ред. Шайдуров Г.Я. ; отв. за вып. Ливицкий А.А. – Красноярск : Сиб. Федер. ун-т, 2012. – С. 282-287
- 86.Lavrushev V., Romanov A., Choni Y. Accurate measuring the reflection coefficient of microwave reflectors // Proceedings 2012 IET International Conference on Information Science and Control Engineering (ICISCE 2012). Vol.3. - Shenzhen: ITE Press, 2012. – p. 1635-1638
- 87.Романов А.Г., Седельников Ю.Е. Измерение коэффициента отражения сетчатых материалов // Радиолокация, навигация, связь. Материалы 19 научно-технической конференции. Воронеж: 2013. С.1632-1642
- 88.Romanov A. Methods and Equipment for Accurate Measurement of Reflection Coefficient in Ka-BAND // Proceedings of the 2013 IX International Conference on Antenna Theory and Techniques (ICATT). – Odessa, 2013. – p. 393-395

Список иллюстративного материала

Рисунки:

Рисунок 1.1 — Основные технологические операции изготовления
углепластикового рефлектора13
Рисунок 1.2 — Двухдиапазонная антенна геодезического КА 14
Рисунок 1.3 — Контурные антенны КА связи 14
Рисунок 1.4 — Основные технологические операции изготовления рефлектора
с отражающей поверхностью из сетеполотна16
Рисунок 1.5 — Антенна Ки-диапазона связного КА 17
Рисунок 1.6 — Зависимости амплитуды и фазы КО от параметров среды
Рисунок 1.7 — Зависимости амплитуды и фазы КО от параметров среды
Рисунок 1.8 - К расчету коэффициента отражения от слоя
Рисунок 1.9 – Коэффициент отражения от слоев разной толщины d 38
Рисунок 1.10 – Зависимость КО от диэлектрических свойств слоя при толщине
d = 0,75мм
Рисунок 1.11 – Коэффициент отражения от слоя при наклонном падении ЭМВ 40
Рисунок 1.12 – Погрешности измерений
Рисунок 1.13 - Зависимость коэффициента отражения от угла падения 44
Рисунок 1.14 - Относительная погрешность от угла падения для значения Γ
при нормальном падении 0.9575 45
Рисунок 1.15 - Зависимость погрешности Г от СКО неровностей поверхности 46
Рисунок 2.1 - К измерению трактовыми способами
Рисунок 2.2 - Зависимость абсолютной погрешности измерения от величины
коэффициента отражения 49
Рисунок 2.3 - Зависимость максимально возможного отклонения измеренного
значения Γ от истинного от величины КСВ при $\Gamma_{o\delta p} = 0.9550$
Рисунок 2.4 - Зависимость максимально возможного отклонения измеренного
значения Γ от истинного от величины КСВ при $\Gamma_{o\delta p} = 0.5$

Рисунок 2.5 - Абсолютная погрешность измерения коэффициента отражения
в волноводе с $\lambda \lambda_{\kappa p} = 0.75$
Рисунок 2.7 - Зависимость $\Gamma_{u_{3M}}$ от относительной частотной расстройки
в полосе 20%
Рисунок 2.6 – Схема измерений
Рисунок 2.8 – Результаты моделирования при реактивности 0.05 54
Рисунок 2.9 - Результаты моделирования при реактивности 0.075 54
Рисунок 2.10 - Результаты моделирования при реактивности 0.1 54
Рисунок 2.11 - Схема с использованием измерительной линии
Рисунок 2.12 – Отклонение истинного и измеренного значений коэффициента
отражения при <i>Г</i> =0.9560
Рисунок 2.13 – Зависимость максимально возможного отклонения измеренного
и истинного значений коэффициента отражения от величины Г 60
Рисунок 2.14 - Схема измерения с использованием Т-моста
Рисунок 2.15 -Зависимости отклонения истинного и измеренного значений
коэффициента отражения 62
Рисунок 2.16 - Отношение абсолютных погрешностей измерения с помощью
измерительной линии и Т-моста 62
Рисунок 2.17 - Зависимость абсолютной погрешности измерения коэффициента
отражения от неравномерности коэффициентов деления х 63
Рисунок 2.18 - Модифицированная схема измерений
Рисунок 3.1 – К обоснованию способа измерения 66
Рисунок 3.2 - Эквивалентная схема
Рисунок 3.3— Схема измерительной установки 67
Рисунок 3.4 - Результат молелировании S ₁₁
Рисунок 3.5 - Зависимость погрешности определения коэффициента отражения
Рисунок 3.5 - Зависимость погрешности определения коэффициента отражения для различных <i>k</i> [•] и <i>k</i> ²
Рисунок 3.5 - Зависимость погрешности определения коэффициента отражения для различных <i>k</i> • и <i>k</i> ²
 Рисунок 3.5 - Зависимость погрешности определения коэффициента отражения для различных k₀ и k²

Рисунок 3.8 - Зависимость погрешности определения 1511 для различных
значений параметров <i>k</i> и <i>kk</i>
Рисунок 4.1 - Оптическая схема полуоткрытого резонатора: параболическое
зеркало и плоский образец75
Рисунок 4.2 - Физика процессов в приближении геометрической оптики
Рисунок 4.3 - Обобщенная схема установки
Рисунок 4.4 – Прямоугольный резонатор
Рисунок 4.5 - Зависимости Q(Γ) и $\xi(\Gamma)$
Рисунок 4.6 - Погрешности определения КО и проводимости образца
Рисунок 4.7 - К определению КО образца
Рисунок 4.8 – Проверочный эксперимент
Рисунок 4.9 – Апроксимация данных измерений N _{max} =3,6,9,15,48
Рисунок 4.10 - Два варианта расчета коэффициента Е
Рисунок 4.11 - Зависимости ξ_{max} и ξ_{cp} пяти значений $L/\Lambda = \Delta f L_{\phi o \kappa}/c$ 101
Рисунок 4.12 - Коэффициент устойчивости решения СЛАУ 102
Рисунок 4.13 - Частотные зависимости коэффициента отражения 103
Рисунок 4.14 - Исходные данные для калибровки установки 104
Рисунок 4.15 - Исходные данные «измеряемых» образцов 105
Рисунок 4.16 - Результаты «измерений» на средней частоте $f = 22 \ \Gamma \Gamma \mu$ 106
Рисунок 4.17 - Результаты «измерений» на средней частоте $f = 20$ ГГц 107
Рисунок 4.18 - Результаты «измерений» на средней частоте $f = 24 \ \Gamma \Gamma \mu$ 107
Рисунок 5.1 - Измерение при значительной протяженности контакта и
неплоскостности поверхности образца 111
Рисунок 5.2 - Экспериментальная установка 112
Рисунок 5.3 - Результат измерения. (Хорошо заметен резонанс) 112
Рисунок 5.4 - Контроль образцов больших электрических размеров 113
Рисунок 5.5 - Установка для измерения КО мостовым способом 113
Рисунок 5.6 - Измерение коэффициента отражения. Способ М1 114
Рисунок 5.7 - Измерение коэффициента отражения. Способ М2 115
Рисунок 5.8 - Установка измерения КО с использованием Т-моста 118

Рисунок 5.10 — Общий вид установки 11 Рисунок 5.11 - Установка с выдвинутым калибровочным диском 12 Рисунок 5.12 — Установка с выдвинутой рамкой с сетеполотном 12 Рисунок 5.13 — Установка с полуоткрытым резонатором 12 Рисунок 5.14 — Структура программы "PMO_KO_3" 12 Рисунок А.1 - Окно установщика 14 Рисунок А.2 - Главное окно программы 14 Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Опибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Опибка: певерно указан частотный диапазон 14 Рисунок А.9 - Внешний вид протокола 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15 Рисунок В.4 — Результат измерения образца <i>Tigh</i>	Рисунок 5.9 - Установка измерения КО в поле прошедшей волны	121
Рисунок 5.11 - Установка с выдвинутым калибровочным диском 11 Рисунок 5.12 — Установка с выдвинутой рамкой с сетеполотном 12 Рисунок 5.13 — Установка с полуоткрытым резонатором 12 Рисунок 5.14 — Структура программы "PMO_KO_3" 12 Рисунок А.1 - Окно установщика 14 Рисунок А.2 - Главное окно программы 14 Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.5 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.9 - Внешний вид протокола 12 Рисунок К.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.4 — Внешний вид окна астройки протокола «Protocol Options» 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок Б.4 — Внешний вид окна астройки протокола «Protocol Options» 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.4 — Внешний вид окна настройки протокола «Protocol Options» 15	Рисунок 5.10— Общий вид установки	121
Рисунок 5.12 — Установка с выдвинутой рамкой с сетеполотном 11 Рисунок 5.13 — Установка с полуоткрытым резонатором 12 Рисунок 5.14 — Структура программы "PMO_KO_3" 12 Рисунок А.1 - Окно установщика 14 Рисунок А.2 - Главное окно программы 14 Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Опибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.9 - Внешний вид протокола 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 - Содержимое папок 15 Рисунок В.2 — Интерфейс программы "PMO_KO_3" 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15	Рисунок 5.11 - Установка с выдвинутым калибровочным диском	122
Рисунок 5.13 — Установка с полуоткрытым резонатором	Рисунок 5.12 — Установка с выдвинутой рамкой с сетеполотном	122
Рисунок 5.14 — Структура программы "РМО_КО_3" 11 Рисунок А.1 - Окно установщика 14 Рисунок А.2 - Главное окно программы 14 Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: певерно указан частотный диапазон 14 Рисунок А.9 - Внешний вид протокола 12 Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.4 — Содержимое папок 15 Рисунок В.3 — Калибровка закончена 15 Рисунок В.4 — Результат измерения образца Tight Net 15 Рисунок В.4 — Результат измерения образца Tight Net 15 Рисунок В.5 – Диалоговые окна программы 15 Рисунок В.6 — Исходная зависимость Swga(f) 16 Рисунок В	Рисунок 5.13 — Установка с полуоткрытым резонатором	124
Рисунок А.1 - Окно установщика 14 Рисунок А.2 - Главное окно программы 14 Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.9 - Внешний вид протокола 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок В.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.4 — Результат измерения образца Tight Net 15 Рисунок В.5 – Диалоговые окна программы 15 Рисунок В.6 — Исходная зависимость Swga(f) 16 Рисунок В.7 — Результаты измерений 15	Рисунок 5.14 — Структура программы "РМО_КО_3"	127
Рисунок А.2 - Главное окно программы 14 Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.9 - Внешний вид протокола 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.1 - Содержимое папок 15 Рисунок В.3 — Калибровка закончена 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15 Рисунок В.5 – Диалоговые окна программы 15 Рисунок В.6 — Исходная зависимость <i>Swga(f)</i> 16 Рисунок В.7 — Результаты измерений 16	Рисунок А.1 - Окно установщика	146
Рисунок А.3 - Меню calibr 14 Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.9 - Внешний вид протокола 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 - Содержимое папок 15 Рисунок В.2 - Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 159 Рисунок В.6 — Исходная зависимость <i>Swgd(f)</i> 160 Рисунок В.7 — Результаты измерений 160	Рисунок А.2 - Главное окно программы	147
Рисунок А.4 - Окно установки исходных данных 14 Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок В.1 - Содержимое папок 15 Рисунок Б.3 — Калибровка закончена 15 Рисунок В.1 - Содержимое папок 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.1 - Содержимое папок 15 Рисунок В.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца Tight Net 157 Рисунок В.5 – Диалоговые окна программы 159 Рисунок В.6 — Исходная зависимость Swgd(f) 160 Рисунок В.7 — Результаты измерений 160 Рисунок В.7 — Результаты измерений 160 Ри	Рисунок А.3 - Меню calibr	147
Рисунок А.5 - Ошибка в имени файла 14 Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.9 - Внешний вид протокола 15 Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "РМО_КО_3" 15 Рисунок В.3 — Калибровка закончена 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15 Рисунок В.5 – Диалоговые окна программы 15 Рисунок В.6 — Исходная зависимость <i>S_{wgd}(f)</i> 16 Рисунок В.7 — Результаты измерений 16	Рисунок А.4 - Окно установки исходных данных	148
Рисунок А.6 - Выбор обрабатываемых файлов 14 Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.9 - Внешний вид протокола 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок В.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.3 — Калибровка закончена 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15 Рисунок В.5 – Диалоговые окна программы 15 Рисунок В.7 — Результаты измерений 15 Рисунок В.7 — Результаты измерений 15 Рисунок В.7 — Результаты измерений 16	Рисунок А.5 - Ошибка в имени файла	148
Рисунок А.7 - Ошибка: неверно указан частотный диапазон 14 Рисунок А.8 - Главное окно программы с результатами обработки 15 Рисунок А.9 - Внешний вид протокола 15 Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 - Содержимое папок 15 Рисунок В.2 — Интерфейс программы "PMO_KO_3" 15 Рисунок В.2 — Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 15 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 15 Рисунок В.5 – Диалоговые окна программы 15 Рисунок В.6 — Исходная зависимость <i>S_{wgd}(f)</i> 16 Рисунок В.7 — Результаты измерений 16 Рисунок В.7 — Результаты измерений 16	Рисунок А.6 - Выбор обрабатываемых файлов	149
Рисунок А.8 - Главное окно программы с результатами обработки 14 Рисунок А.9 - Внешний вид протокола 15 Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr»</i> 16 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 — Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.7 — Результаты измерений 166	Рисунок А.7 - Ошибка: неверно указан частотный диапазон	149
Рисунок А.9 - Внешний вид протокола 14 Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 15 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 156 Рисунок В.7 — Результаты измерений 166	Рисунок А.8 - Главное окно программы с результатами обработки	150
Рисунок А.10 - Окно Protocol Options 15 Рисунок Б.1 - Основное окно программы КО R&S 13 Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> » 14 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.6 — Исходная зависимость <i>S_{wgd}(f)</i> 166 Рисунок В.7 — Результаты измерений 166	Рисунок А.9 - Внешний вид протокола	151
Рисунок Б.1 - Основное окно программы КО R&S 11 Рисунок Б.2 — Внешний вид окна « <i>Calibr»</i> 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола « <i>Protocol Options</i> » 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.7 — Результаты измерений 160	Рисунок А.10 - Окно Protocol Options	151
Рисунок Б.2 — Внешний вид окна «Calibr» 15 Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца Tight Net 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.6 — Исходная зависимость Swgd(f) 160 Рисунок В.7 — Результаты измерений 160	Рисунок Б.1 - Основное окно программы КО R&S	152
Рисунок Б.3 — Окно выбора файла измерений 15 Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options» 15 Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.6 — Исходная зависимость Swgd(f) 160 Рисунок В.7 — Результаты измерений 160	Рисунок Б.2 — Внешний вид окна « <i>Calibr</i> »	152
Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options»15 Рисунок В.1 – Содержимое папок	Рисунок Б.3— Окно выбора файла измерений	153
Рисунок В.1 – Содержимое папок 15 Рисунок В.2 – Интерфейс программы "PMO_KO_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 157 Рисунок В.6 — Исходная зависимость Swgd(f) 160 Рисунок В.7 — Результаты измерений 160	Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options».	154
Рисунок В.2 – Интерфейс программы "РМО_КО_3" 15 Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> 157 Рисунок В.5 – Диалоговые окна программы 159 Рисунок В.6 — Исходная зависимость Swgd(f) 160 Рисунок В.7 — Результаты измерений 160	Рисунок В.1 – Содержимое папок	155
Рисунок В.3 — Калибровка закончена 157 Рисунок В.4 — Результат измерения образца <i>Tight Net</i> .157 Рисунок В.5 – Диалоговые окна программы .157 Рисунок В.6 — Исходная зависимость Swgd(f) .166 Рисунок В.7 — Результаты измерений .166	Рисунок В.2 – Интерфейс программы "РМО_КО_3"	156
 Рисунок В.4 — Результат измерения образца <i>Tight Net</i>	Рисунок В.3 — Калибровка закончена	157
Рисунок В.5 – Диалоговые окна программы	Рисунок В.4 — Результат измерения образца <i>Tight Net</i>	157
Рисунок В.6 — Исходная зависимость S _{wgd} (f)16 Рисунок В.7 — Результаты измерений16	Рисунок В.5 – Диалоговые окна программы	159
Рисунок В.7 — Результаты измерений16	Рисунок В.6 — Исходная зависимость $S_{wgd}(f)$	160
	Рисунок В.7 — Результаты измерений	160
Таблицы:

Таблица 1.1 – Способы и устройства измерения коэффициента отражения	. 20
Таблица 1.2 - Технические характеристики измерителей КСВ и ослаблений	. 30
Таблица 1.3 - Технические характеристики измерителей S-параметров	. 31
Таблица 4.1 - Содержание файлов, формируемых <i>CST MWS</i>	. 91
Таблица 4.2 - Модули коэффициентов {α _n }	. 93
Таблица 4.3 - Коэффициенты аппроксимации при N _{max} =21	. 93
Таблица 4.4 - Коэффициенты аппроксимации при <i>N_{max}</i> =39	. 94
Таблица 5.1 – Результаты измерений КО образцов сетеполотна	123

ПРИЛОЖЕНИЕ А.

Программное обеспечение к установке изменения КО мостовым способом

Инструкция по работе с программой Statistics R&S

А.1 Установка программы

Для установки программы на анализатор или персональный компьютер необходимо запустить исполняемый файл **SETUP.exe** в каталоге *Statistics R&S* программного обеспечения.

В появившемся окне (рисунок А.1) необходимо указать адресс каталога в который будет установлена программа и нажать кнопку «*Install*».

🖟 Install Statistics R&S		×
Select folder where Setup will Install files click Install to begin installation		
Install Statistics RS to		
C/V		Browse
	Install	Cancel

Рисунок А.1 - Окно установщика

По завершению процедуры установки на рабочем столе появится ярлык программы «*Statistics R&S*».

А.2 Запуск и подготовка к работе

Для запуска программы необходимо кликнуть по ярлыку «*Statistics R&S*» на рабочем столе. Появится главное окно программы (рисунок A.2). При первом запуске программы радиус диска R, коэффициент отражения калибровочного образца KO*ideal* и массивы S21Wi, S21LCi, S21RCi заданы по умолчанию.

Если необходимо задаться другими данными, то нужно зайти в меню «*calibr*» (рисунок A.3) и ввести свои данные. Для S21Wi, S21RCi, S21LCi необходимо указать место положение требуемых файлов. Для того чтобы сохранить настройки нажать «*save*».

Примечание - файлы колибровки должны иметь названия S21LCi.csv, S21RCi.csv, S21Wi.csv в противном случае проргамма выдаст соответствующее сообщение об ошибке:

Not file S21Wi.csv Not file S21RCi.csv Not file S21LCi.csv

🛞 Statisti	ics R&S				
calibr n	neasureme	nt pro	tocol		
Input da	ta direct	ion			
N	R	fi	ampi CKC	1%	
input d	lata				START Cancel

Рисунок А.2 - Главное окно программы

🛞 Calibr	
Radius Disc: KO ideal	100 mm 1 +j 0
S21wi	C:\Users\1\Desktop\Statistics R&S\S21Wi, Browse
S21LCi	C:\Users\1\Desktop\Statistics R&S\S21LCi. Browse
S21RCi	C:\Users\1\Desktop\Statistics R&S\S21RCi Browse
	Save

Рисунок А.3 - Меню «calibr»

А.3 Обработка измерений

А.3.1 Для того чтобы приступить к обработке измерений войдите в меню «measurement» (измерения) и выберите соответствующий вид измерения (М1, М2, М3 или М4).

А.3.2 В появившемся окне (рисунок А.4) задайте местоположение каталога с файлами, соответствующими выбранному типу измерения. Для этого нажмите кнопку **«browse»** и в появившемся окне выберите необходимый каталог, нажмите **«OK»**.

Рисунок А.4 - Окно установки исходных данных

Если в указанном каталоге имеются файлы с расширением .CSV, имена которых не соответствует установленной форме (см. п.5.2.4.3), то программа выдаст сообщение об ошибке (рисунок А.5) и исключит этот файл из списка обрабатываемых.

Statistika 💌
Error in file name KPUST(50;180_L.csv
ОК

Рисунок А.5 - Ошибка в имени файла

А.3.3 После того как каталог выбран, в окне «**files**» появится список файлов, которые можно обработать. По умолчанию все файлы из списка будут обрабатываться. Для того чтобы исключить какой-либо файл, надо снять флажок напротив имени этого файла в окне «**files**» (рисунок А.6).

•	×
Open a Sourse direction	
C:\Users\1\Desktop\test\Test finish\	Browse
Files	
KPUST(50:0) L.csv	
KPUST(50;90)_L.csv	
I	
Frequency interval	
Emin 35 GHz - Emin 37	GHz 📥
OK	Cancel

149

Рисунок А.6 - Выбор обрабатываемых файлов

А.3.4 Установите частотный диапазон, в пределах которого будут обрабатываться измерения, и нажмите «**OK**». Если данные, в каком либо файле, не соответствуют выбранному частотному диапазону, то программа выдаст соответствующее сообщение об ошибке с указанием возможного частотного диапазона (рисунок А.7) и исключит этот файл из списка обрабатываемых.

Statistika	
в C:\Users\1\Desktop\test\Test finish\Measurement\KPUST(50;180)_L.csv Fmin>3.50000000000000E+010Fmax<3.7000000000000E+010	
ΟΚ	

Рисунок А.7 - Ошибка: неверно указан частотный диапазон

А.3.5 Если все вышеперечисленные операции выполнены верно, то окно установки исходных закроется и в таблице главного окна появятся координаты соответствующих точек.

Для расчёта коэффициента отражения нажмите «Start».

Примечание - Если частотный диапазон, в котором сняты массивы S21Wi, S21RCi или S21LCi, не совпадает с частотным диапазоном измерения коэффициента отражения или в случае, когда шаг по частоте различен, программа выдаст соответствующее сообщение об ошибке :

Error in frequency interval file S21Wi (S21RCi, S21LCi).

В случае если расчёт был произведён без ошибок, в таблице должны появиться результаты расчёта, а в окне «*SAMPL*» диаграмма. Если кликнуть мышью по одной из точек, то появится соответствующее значение коэффициента отражения (рисунок A.8).

Рисунок А.8 - Главное окно программы с результатами обработки

Каждая строка таблицы включает в себя значение координат точки измерения, среднее по частоте значение коэффициента отражения и СКО в процентах, коэффициента отражения в точке.

В последней строке, «*result*», отображается средний коэффициент отражения по образцу и СКО коэффициента отражения по образцу в процентах.

А.4 Протокол обработки данных

По умолчанию все результаты обработки автоматически заносятся в протокол. Для того чтобы просмотреть протокол (рисунок А.9), в меню «*Protocol*» выберите пункт «*view*».

M 2				
N	R	fi	ampl	CKO%
1	50	0	0.942	4.263
2	50	180	0.952	5.572
3	50	90	0.942	4.254
result			0.945	0.526

Рисунок А.9 - Внешний вид протокола

Чтобы формировать протокол не автоматически, а по запросу на сохранение данных, в меню «*Protocol*» выберите «*options*» и уберите флажок напротив «*Autosave result in protocol*».

Для того чтобы в протоколе не отображалась диаграмма, в меню «*Protocol*» выберите «*options*» и уберите флажок напротив «*Save picture in protocol*» (рисунок А.10).

Рисунок А.10 - Окно Protocol Options

Для того чтобы сохранить протокол в меню «*Protocol*» выберите «*Save*», в открывшемся окне укажите имя файла и каталог куда хотите сохранить протокол. Протокол сохраняется в формате *.*rtf* и может быть открыт любым текстовым редактором поддерживающим этот формат.

ПРИЛОЖЕНИЕ Б.

Программное обеспечение к установке измерения КО

в поле прошедшей волны

Б.1 Обработка данных измерений

Для обработки данных измерений и вычисления искомого коэффициента отражения необходимо:

1 Запустить программу **КО R&S.exe** двойным щелчком по иконке 🖻 ее ехе-файла. Откроется основное окно программы (рисунок Б.1).

🚯 R&S				- C X
Calibr Protocol				
Select data file				
				Browse
-Select frequency	/ interval			
Fmin 27	GHz •	Fma	ax 30	GHz •
-Select measure	ment			
Measur	ement 1		C Measu	irement 2
Result				
S11=				
	Start		Cancel	

Рисунок Б.1 - Основное окно программы КО R&S

2. Зайти в меню «*Calibr*» (рисунок Б.2) и в открывшемся окне указать файлы измерений S12(1) и S12(2), где S12(1) – массив измерений, снятый без образца, S12(2) – массив измерений снятый с хорошо проводящим материалом. Для чего необходимо нажать на соответствующую кнопку «*Browse*», и в появившемся окне выбрать необходимый файл измерений (рисунок Б.3)

📑 Calibr	×
Set calibr files	
S21(1)	
	Browse
S21(2)	
	Browse
Save	Cancel

Рисунок Б.2 — Внешний вид окна «*Calibr*»

		1	.55				
🚯 Открыть							×
Папка:	🔒 Измерения2			•	+ 🗈 💣 🗉	.	
œ.	Имя	~			Дата изменен	ия	Тип
Недавние места Рабочий стол	점 KP2V.csv 점 KPA15.csv 점 KPMD.csv 점 KPT15.csv				03.06.2013 14:2 03.06.2013 14:2 03.06.2013 14:1 03.06.2013 14:1	81 26 .8 22	Файл Міс Файл Міс Файл Міс Файл Міс
Библиотеки Компьютер							
	•						Þ
Сеть	Имя файла:				•	0	ткрыть
	Тип файлов:	Data file (*.cs	v)		•)тмена

152

Рисунок Б.3— Окно выбора файла измерений

Выбрав файлы измерений S12(1) и S12(2), необходимо нажать кнопку «*Save*», после чего указанные файлы будут участвовать в расчётах до тех пор, пока не будут указаны новые.

3. Перейти в основное окно программы, закрыв окно «*Calibr*». В главном окне следует выбрать файл, содержащий массив измерений исследуемого образца S21(3), для чего нажать кнопку «*Browse*», и в появившемся окне выбрать необходимый файл (аналогично выбору файлов S12(1) и S12(2)). После этого, следует указать полосу частот, в пределах которой планируется производить расчёт. Далее выбирается формула, по которой будут осуществлены расчёты. Measurement1 соответствует формуле (3.2), Measurement2 – формуле (3.3).

После щелчка по кнопке «*Start*» и в графу «*Result*» выводится вычисленный коэффициент отражения.

Примечание - Массивы измерений S12(1), S12(2) и S12(3) должны быть сняты в одной полосе частот и с одним и тем же шагом по частоте, если данное условие не соблюдается, программа выдаст соответствующее сообщение об ошибке.

Б.4 Протокол обработки данных

Рассчитанный коэффициент отражения заносится в протокол. Протокол представляет собой текстовый файл с расширением *.*txt*.

Для того чтобы настроить вид протокола, необходимо зайти в меню «*Protocol*» и выбрать вкладку «*Options*» (рисунок Б.4).

154
📴 Protocol Options
Save in protocol
✓ Type of Mesaurement
🔽 Data file name
✓ Frequency interval
Avtosave
☑ Avtosave result in protocol
Ok Cancel

154

Рисунок Б.4 — Внешний вид окна настройки протокола «Protocol Options»

В окне *«Protocol Options»* можно выбрать какие данные следует сохранять в протоколе:

- **Туре of Measurement** вид расчётной формулы (Measurement1 или *Measurement2*);
- Data file name имя файла, данные из которого были обработаны;
- *Frequency interval* полоса частот в пределах которой производился расчёт.

В графе «*Autosave*» можно указать следует ли заносить результаты в протокол каждый раз после нажатия кнопки «*Start*» автоматически или каждый раз спрашивать разрешение на сохранение.

Для того чтобы сохранить протокол необходимо зайти в меню «*Protocol*» и нажать вкладку «*Save*».

ПРИЛОЖЕНИЕ В.

Программное обеспечение к установке с полуоткрытым резонатором

При использовании ПО установки полуоткрытым резонатором, С пользователю предоставляется свобода в структурировании хранении И используемых программой данных в рамках вполне естественных ограничений в части формата текстовых файлов и ключевых символов в составе их имен. На рисунке В.1 показан пример возможной организации данных, что полезно на первых порах, пока у оператора не выработается собственный стиль под конкретный круг задач.

Рисунок В.1 – Содержимое папок

В директории РМО КО 3_2013 кроме *exe*-файла программы и папок «*Calibration*» и «*Archive*» записаны четыре файла результатов тестовых измерений:

- 1) WGD_27_30 это S₁₁(*f*) облучателя-волновода;
- S11 Metal_27_30 это S₁₁(*f*) с идеально отражающим металлическим диском;
- 3) S11 Tight Net это $S_{11}(f)$ с плотным сетеполотном;
- 4) S11 Less Tight Net это $S_{11}(f)$ с разреженным сетеполотном.

В папке «Calibration» записаны четыре файла:

1) файл "**WGD** 27_30" – это S₁₁(*f*) облучателя-волновода;

 2) файл "1.00□27_30" – это S₁₁(*f*) идеально отражающего эталона (металлического диска), т.е. переименованный файл S11 Metal_27_30;

3) файл "**0.8500**□27_30" – это S₁₁(*f*) для калибровочного образца с КО 0.85;

4) файл "**0.9500**□27_30" – это S₁₁(*f*) для калибровочного образца с КО 0.95;

Папка «*Archive*» пуста. В нее можно записывать любые файлы. Наличие этой и любых других папок в текущей директории программой игнорируется.

В.1 Интерфейс программы

Программа "**PMO_KO_3 2013**" предназначена исключительно для измерения КО образцов, поэтому она не содержит вкладок исследовательского плана.

Большую часть формы (рисунок В.2) занимает график (*Chart*) для частотных характеристик $S_{11}(f)$ с двумя осями: *amplitude* (амплитуда) и *phase* (фаза), которые отличаются цветом, как и графики, к ним относящиеся. При этом используются те же цвета (салатный и желтый), что и на мониторе приборов типа ZVA. Черный фон графика тоже копирует палитру прибора.

Рисунок В.2 – Интерфейс программы "РМО_КО_3"

Работа программы начинается с операции калибровки, в ходе которой программа анализирует состав папки «*Calibration*», и если находит в ней необходимые файлы, то выполняет подготовительные вычисления, активизирует кнопку «*Measuring*» (Измерения) и выводит на экран график $S_{11}(f)$ волновода (рисунок В.3), что сигнализирует о готовности к обработке файлов с измеренными данными.

Рисунок В.3 — Калибровка закончена

Щелчок по кнопке «*Measuring*» вызывает диалоговое окно, позволяющее указать файл с измененными данными образца. В результате обработки на графике появятся зависимости, состав которых определяется проставленными галочками, и крупным шрифтом будет выведено значение КО (рисунок В.4).

Рисунок В.4 — Результат измерения образца Tight Net

В.2 Протокол измерений

Кнопка «*SaveChart*» предназначена для сохранения графика в виде точечного рисунка в jpg-формате (рисунок В.4), который может служить протоколом результатов измерений. Директория и имя файла для записи

указываются в ходе стандартного диалога по этому поводу. Причем, при сохранении графика его палитра решительно изменяется в интересах «книжных» комбинаций цвета.

В.3 Режим калибровки установки

Калибровка состоит в измерении частотных зависимостей КО $S_{11}(f)$ на входе установки (в сечении коаксиального разъема КВП) и занесении соответствующих данных в папку «*Calibration*» для последующей их программной обработки. Для этого:

В.3.1 Измеряется КО $S_{11}(f)$ без какого-либо образца (это функция $S_{o\delta\pi}(f)$ в формулах 4.14 – 4.20) и *Excel*-таблица данных f_k , Re(f_k) и Im(f_k) экспортируется в папку «*Calibration*» под именем, начинающимся ключевыми символами "**WGD**_". Расширение файла должно быть **.csv** (автоматически формируется прибором). В имени файла после ключевых символов могут располагаться любые буквы, цифры и символы. Например, имя "WGD_27_30" говорит о том, что файл содержит данные для волновода (waveguide) в диапазоне частот 27÷30 ГГц. Имя файла можно дополнить датой измерений и другой текстовой или цифровой информацией. Кроме того, любая дополнительная информация может быть внесена в строки-комментарии самого файла. Начальным символом этих строк может быть # или любой иной символ за исключением буквы "f" или цифры.

В.3.2 Закрепляется эталон, КО которого равен единице. Измеряется $S_{11}(f)$ и сохраняются результаты в той же папке «*Calibration*» аналогично предыдущему пункту с той лишь разницей, что имя файла должно начинаться ключевыми символами "*.**_", означающими значение КО эталона, сопровождаемое подчеркиванием, например, для идеально отражающего эталона "1.00_" (нули можно опустить "1_") или, например, "0.98_" (для эталона с КО = 0.98).

В.3.3 Поочередно устанавливаются два других эталона, КО которых известны точно, измеряются частотные зависимости $S_{11}(f)$ и записываются результаты в папке «*Calibration*» с той лишь разницей, что имя файла должно начинаться ключевыми символами "**0**.***_". Звездочки изображают десятичные

знаки, соответствующие значению КО эталона. Программа на этапе калибровки выделяет файлы с расширением ".csv", считывает ключевые символы и обрабатывает содержимое файлов.

В.3.4 По щелчку «*StartCalibration*» программа ищет в текущей директории (в папке с программой) папку по имени «*Calibration*» и анализирует ее содержимое. В зависимости от обнаруженной ситуации, программа инициирует представленные ниже диалоги. Если в папке «*Calibration*» содержатся необходимые файлы, то программа вычисляет калибровочную зависимость $\xi_3(\Gamma)$.

Confirm	Нет
The folder "Calibration" not found in the current directory. Can you point it out?	Есл (отн
Yes No	как 1.0_
Information	
Create a folder "Calibration" with files "WGD_{any symbols}.csv", "1.0_{any symbols}.csv", at least.	
OK	
Information	Пап
The Folder "Calibration" is empty. There should be file "WGD_{any symbols}.csv" of waveguard S11(f) and at least file "1.0_{any symbols}.csv" of ideal etalon S11(f). Amend the folder!	дол 1.0_
OK	
Confirm	Vor
In addition to the file "1.0_{any symbols}.csv", there should be at least two files of another etalons, in the Folder "Calibration". Would you like to create files "0.95csv" and "0.85csv" automatically?	0.85 поп
After clicking "No" you have to amend the Folder!	
<u>Y</u> es <u>N</u> o	

Нет папки Calibration.

Если Вы не можете ее указать (ответ *No*), то появится инструкция: как создать ее с файлами WGD_** и 1.0_**, как минимум

Папка пуста. В ней, как минимум, должны быть файлы WGD_** и 1.0_**. Поправьте папку.

Хотите ли создать файлы 0.95_**, 0.85_** автоматически? Если *No* – поправьте папку.

Рисунок В.5 – Диалоговые окна программы

По окончании процесса считывания калибровочных данных становятся активными кнопки «*Measuring*» (Измерение) и при галочке в квадратике **S11wgd**[f] появляются графики (рисунок В.6).

В.4 Измерение КО образца

Измерение запускается щелчком кнопки «*Measuring*» (Измерение). Во всплывшем диалоговом окне указывается файл с результатами измерения $S_{11}(f)$

Рисунок В.6 — Исходная зависимость $S_{wgd}(f)$

испытуемого образца. На графике появятся зависимости, состав которых задается галочками в квадратиках. Галочки можно ставить или снимать в любом порядке и в любой момент: все функции рассчитаны и записаны в память. Аппроксимированные зависимости выделяются толстыми линиями.

На этот же график крупным шрифтом выводится значением КО образца. Заголовок графика повторяет имя обрабатываемого файла (рисунок В.7).

Рисунок В.7 — Результаты измерений

Для проверки содержимого какого-то файла до вычислений (для уверенности в корректности записанных в нем данных, проявляющейся в совпадении графиков с графиками программы измерений "NWA", предусмотрена кнопка «*Show S11*».